
Modeling the Toning Process in Electrophotographic
Copiers/Printers ∗

Ulrich Mutze, Bad Ditzenbach, www.ulrichmutze.de

• The toning process

• Modeling the dynamics of irregularly shaped particles

• Some aspects of the toning model

• Results

∗ Talk given at the Institute for Computer Applications 1 (ICA1) of the University of
Stuttgart October 15th 2004. Extended version with later additions.



The Toning Process



Digital printer for the B/W print on demand market



• Cleaning

• Charging

• Exposure

• Toning

• Transfer

• Fusing



Where all this happens



Rotating magnetic brush



photo conductor belt, toning shell, magnetic roller, developer mass



The same in the model



SEM image of typical carrier particles



Modeling the dynamics of irregularly shaped particles





Our particle model

The part of space occupied by a particle is represented as a rigid assembly
of strongly overlapping spheres (Idea of Thomas Dera). This gives rise to
a list c1, . . .,cn of points and a list r1, . . .,rn of radii.

We fill this space with matter of given density ρ and Young’s modulus E.

By stochastic integration we find the volume V , the mass m= ρV , the center
of mass x, the positively oriented triplet of inertial axes ~e1, ~e2, ~e3 :=~e1×~e2
and the corresponding moments of inertia θ1, θ2, θ3. Further, we place an
electric point charge q, and a magnetic dipole ~j at the point x. Finally we
determine an approximate value A for the surface of the particle and the
radius r of a minimal bounding sphere arround x.



Our particle model as a class Par

In a computational model (as opposed to a mathematical one in gen-
eral) we need to associate computer representable numbers— the type
of which we denote by R—with the particle descriptors intoduced so far.
Such number-based (thus storable) representations of descriptors are at-
tributes (or data members) in OO parlance. From now on we’ll encounter
OO parlance in many places. In particular, we’ll see ‘a particle p according
to our particle model’ promoted to either ‘an instance p of class Par’ or ‘an
object of type Par’. Beware that a OO-class is neither a mathematical set
nor a mathematical class. (Having implemented the mathematical class of
all hereditarily finite sets as a C++ class, I know this only too well. A per-
taining observation is that all mathematical classes and sets define equality
(by ‘extension’) whereas many OO classes work well without equality being
defined or definable.)



1

There are two agreements to be made to define attributes:

(1) Choice of units for the physical quantities: I always use SI units and
never found any disadvantage in that. (Nature can do this step in an analo-
gous manner since it provides sufficiently many natural constants as units.)

(2) Choice of a frame ( system of reference). A frame consists of a refer-
ence point (origin) o and a positively oriented list ~u1,~u2,~u3 (recall that this
implies ~u3 = ~u1×~u2) of mutually orthogonal unit vectors (reference direc-
tions is space). A frame F and a vector ~v determine the list ~u1 ·~v, ~u2 ·~v, ~u3 ·
~v ∈ R3 which we designate v. It is natural to define F(~v) := v and to define
the application of F to a point p as F(p) :=F(p−o) where p−o is the vector
for which o+(p−o) = p.

We select an arbitrary but fixed frame F̃ , the master frame. Of course, there
will be only one master frame, but each particle gets its individual initial



2

frame F which has the same reference directions as the master frame and
the particle’s center of mass x as origin. We use F to transform the vectors
~e1, ~e2, ~e3, ~j and points c1, . . .,cn into the objects e1, e2, e3, j, c1, . . .,cn of type
R3. We choose these lists, together with the scalar descriptors ρ,E, ... as
attributes of class Par. The values of these attributes specify the internal
state of a Par object. This state says nothing about the position in space
or the state of motion.

Par describes rigid bodies and their magnetism and charge are permanent.
So the internal state is constant in time for any object of this type.

The placement of a particle in space needs to be variable for the model to
be useful. Moving a particle arround determines a concurrent process of
moving the individual initial frame arround as a body-fixed frame. There-
fore, any placement of a particle in space determines its current individual



3

frame Ft, where t is the time-coordinate of the event, as which a placement
can be understood.

Let F1 and F2 be frames, then there is a uniquely determined element g of
the Euclidean group E which moves F1 into F2. Let us write F2 = F1 · g to
express this (C++ syntax makes it easier to let g be the second factor in a
product than the first one). Then it is natural to denote g by F−1

1 ·F2. So,
our descriptor of the placement in space is g(t) = F̃−1 ·Ft ∈ E , where Ft is
the current individual frame.



Interlude: Modeling the Euclidean group as a class E

First we define descriptors for an arbitrary element g ∈ E : We decompose
g into a minimal positive rotation arround the origin of F̃ and a translation.
Thereby we get a unit vector~n in the direction of the rotation axis, a rotation
angle ϕ, 0 ≤ ϕ ≤ π, and a translation vector ~x. (ϕ is determined uniquely,
~n only for ϕ 6= π, otherwise ~n and −~n correspond to the same rotation.) As
descriptors we use the vectors~r :=~n tan(ϕ/2) and ~x, and as attributes the
objects r := F̃(~r) (rotation vector ) and a := F̃(~x) (translation vector ) of type
R3. So it suggests itself to write an arbitrary instance of our class E as
E(r,x). In the following we define methods of E as if we were free to invent
them. Actually, they need to be as we define them in order to make E a
model of E . First we define a product of rotation vectors r1 and r1 in steps:

s := 1− r1 · r2 , S := |s|< ε ? 1/ε : 1/s ,



1

r1 ◦ r2 := (r1+ r2− r1× r2) ·S ,

where ε is a fixed small number for which I use ε = 10−12. Further, we
need the action of rotation vectors on translation vectors, written in postfix
format:

x∗ r :=
x(1− r · r)+2(x · r)r−2x× r

1+ r · r
which satisfies the consistency relation

x∗ (r1 ◦ r2) = (x∗ r1)∗ r2

and the approximation x∗ r = x−2x× r+O(|r|2). Finally the multiplication
law in E is

E(r1,x1)◦E(r2,x2) := E(r1 ◦ r2, x1 ∗ r2+x2) .

It implies E(r,x) = E(r,0)◦E(0,x) and that the unit element and the inverse
are given by

E(0,0) , E(r,x)−1 = E(−r,−x∗−r) .



Notice that computing the product of any huge number of instances of
E will give a result that represents an Euclidean transformation with the
same precision as each factor in the product. The only effect of rounding
errors is that the resulting transformation differs from the exact result by
just an Euclidean transformation. This property is extremely important for
modeling. It guaranties that the shape of particles remains exactly constant
under the evolution algorithm to be described later.

The class E as a nucleus of Euclidean geometry

The class E allows translating Felix Klein’s Erlanger Programm into the
OO framework: A class Y represents a concept of Euclidean geometry iff
it defines a product of its instances y with the instances of E such that

(y◦E(r1,x1))◦E(r2,x2) = y◦ (E(r1,x1)◦E(r2,x2)) .



1

For the classes Point, Vector, and AxialVector with generic elements Point(y),
Vector(y), and AxialVector(y), where y is of type R3, the appropriate defi-
nitions are

Point(y)◦E(r,x) := Point(y∗ r+x)

Vector(y)◦E(r,x) := Vector(y∗ r)

AxialVector(y)◦E(r,x) := AxialVector(y∗ r)

The first of these actions enforces the particular group multiplication law of
E given earlier simply as a definition. In order to capture the distinction be-
tween classes Vector and AxialVector one would have to use an enlarged
group that includes spacial inversion. The difference becomes striking in
the 2D version of geometry, here axial vectors can be faithfully represented
by a single R, whereas a vector needs—of course—two of them.



2

In my own implementation of geometry there is a common interface for
the 2D and 3D versions, so that the setting of a macro decides whether a
program becomes 2D or 3D.



Describing velocity

Since in our case position is described by an element of a Lie group E,
it is canonical to describe velocity by an element of the Lie algebra dE.
This class is defined as follows: The general element is dE(ω,v) where the
arguments, just as in the case E, are of type R3. The methods of the class
are

dE(ω1,v1)+dE(ω2,v2) := dE(ω1+ω2,v1+v2)

dE(ω,v) ·α := dE(ω ·α,v ·α)

for α of type R. And finally the Lie product ∗

dE(ω1,v1)×dE(ω2,v2) := dE(ω1×ω2,ω1×v2−ω2×v1)

∗there were omissions in this and the next three formulas shown in the original talk which
are corrected here; also some additions have been made



This operation makes the linear space dE an algebra. It is the only oper-
ation defined here that is not needed to formulate our time stepping algo-
rithm for rigid bodies. The class dE becomes related to Euclidean geome-
try by

dE(ω,v)◦E(r,x) := dE(ω∗ r,v∗ r+(ω∗ r)×x)

It would be natural for an actual implementation to make use of the hierar-
chical nature of nominal type systems: It is not required that attributes are
directly numerical— they may also belong to a class which was defined be-
fore and the attributes of which can be traced probably through a sequence
of classes finally down to numerical nature. (This is what I consider ‘des
Pudels Kern’ of the OO paradigm). Then one had to use for ω an object of
type AxialVector and for v one of type Vector. In the following, let for any
x ∈ R3 be x̂ the corresponding vector of unit length.



The exponential function from dE to E is given by

exp(dE(ω,v) · τ) := E(ω̂ · tan(
ϕ

2
) , v‖ · τ + v⊥ · τ ·Re(z) + ω̂×v⊥ · τ · Im(z))

where

ϕ := |ω| · τ , v‖ := ω̂(ω̂ ·v) , v⊥ := v − v‖ , z :=
exp( iϕ)−1

iϕ
.

Here τ is introduced so that the function makes sense also if we work
with quantities that carry their dimension with them (although I introduced
attibutes as merely numerical), in this case τ has to carry the dimension
‘time’, of course. The basic properties are:

exp(dE(ω,v) · τ)◦ exp(dE(ω,v) · τ′) = exp(dE(ω,v) · (τ+ τ
′)) ,

exp(dE(ω,v) · τ) = E(ω · τ
2
, v · τ)+O(τ2) .



The corresponding ‘inverse’ function log from E to dE is given by

log(E(r,x)) := E(r̂ ·ϕ , x‖ + x⊥ ·Re(z) + r̂×x⊥ · Im(z))

where

ϕ := 2arctan(|r|) , x‖ := r̂(r̂ ·x) , x⊥ := x − x‖ , z :=
iϕ

exp( iϕ)−1

or approximately log(E(r,x)) = dE(r ·2 , x)+O(|r|2). The basic property is

exp(log(E(r,x))) = E(r,x) .

whereas the converse property log(exp(dE(ω,v) · τ)) = dE(ω,v) · τ holds
only for τ not too large.

Es we have seen, the motion of a particle determines a curve t 7→ g(t) ∈ E
which in our computational model gives rise to a function object E(r(t),x(t)).



1

The concept of differentiating a Rn-valued curve by determining the best
approximating line has a natural generalization to Lie-Group-valued curves:

g′(t) := lim
h→0

log(g(t−h)−1 g(t +h)) · 1
2h

which is a precise version of the heuristic formula

g(t +h) = g(t)exp(g′(t) ·h) +O(h2) .

concerning the best approximation of g by a one-parameter subgroup.
Making use of the first-order approximations of the operations ∗ and log
one easily finds

E(r(t),x(t))′ = dE(ω(t),v(t)+x(t)×ω(t))

where

ω(t) := r(t)′ := lim
h→0

log(r(t−h)−1 ◦ r(t +h)) · 1
2h

,



2

is the angular velocity and

v(t) := x(t)′ := lim
h→0

(−x(t−h)+x(t +h)) · 1
2h

.

is the velocity proper or the translational velocity. In all cases the deriva-
tion is defined by the same method since a real vector spaces (considered
as an abelian group) coincides with its Lie algebra and has the identity
function as log (and exp). I would have been less surprised if the deriva-
tive E(r(t),x(t))′ would have turned out to equal dE(ω(t),v(t)). But closer
inspection shows, that E(r(t),x(t))′ is a velocity associated with the trans-
formation of the whole space and is not aware of the position x(t) (actually
the position vector with respect to the master frame) of the particle. So,
in order to get the translational velocity at any position y one has to take
E(r(t),x(t))′ ◦ y which turns out to be v(t)+ω× (y− x(t)) and thus v(t) for
y = x(t).



3

if the position after a short time τ is given by

E(r,0)◦ exp(dE(ω,v) · τ)◦E(0,x)



to first order in τ. Here, placing the factor in the middle lets ω act as an
angular velocity arround the center of mass rather than arround the origin.
The function log allows giving a more direct definition:

dE(ω(t),v(t)) = lim
τ→0

log
(

E(r(t),0)−1 ◦E(r(t + τ),x(t + τ))◦E(0,x(t))−1
)

τ
.

It may surprise that the seemingly more natural expression

lim
τ→0

log
(

E(r(t + τ),x(t + τ))◦E(r(t),x(t))−1
)

τ

does not yield dE(ω(t),v(t)) but dE(ω(t),v(t)+ x(t)×ω(t)). There are two
other important physical quantities for which we need dE as the data type
which provides fitting geometrical behavior: (1) pairs of torque and force,
(2) pairs of angular momentum and linear momentum.



Describing inertia

The last class we need is the class I which describes the inertia in reacting
to forces and torques. We write the general instance as I(I1, I2, I3,a1,a2,a3,µ)
where µ and the Ii are of type R and the ai of type R3. We define the method
of inversion

I(I1, I2, I3,a1,a2,a3,µ)
−1 := I(1/I1, 1/I2, 1/I3, a1,a2,a3, 1/µ)

and the action of E by

I(I1, I2, I3,a1,a2,a3,µ)◦E(r,x) := I(I1, I2, I3,a1 ∗ r,a2 ∗ r,a3 ∗ r,µ)

and the rule for forming momentum from velocity

I(I1, I2, I3,a1,a2,a3,µ)∗dE(ω,v) :=

dE(a1 · I1 · (ω ·a1)+a2 · I2 · (ω ·a2)+a3 · I3 · (ω ·a3),v ·µ)



Finalizing class Par

We denote the general instance of a Par as Par(σ, g, h), where σ is a col-
lective name for all attributes describing the internal state and the position
g is of type E and the velocity h is of type dE. The action of E is then

Par(σ, g, h)◦E(r,x) = Par(σ, g◦E(r,x), h◦E(r,x))

The point to notice here is that σ is not only constant in time but also invari-
ant with respect to re-placement in space, just what action of E is to mean
here.



Time stepping algorithm for Par

First we give an algorithm for the free evolution step (no force and no torque
acts on the particle during the time ∆t of the step). The values of the at-
tributes at the end of the step will be stored in the same variables which
carried the values at the beginning of the step. We thus describe the evo-
lution step as a mutating algorithm.

freeStep(∆t): From σ get I0 := I(θ1,θ2,θ3,e1,e2,e3,m) and from g = E(r,x)
get r and x. Then τ := ∆t/2, gc := exp(h · τ), I := I0 ◦ g, Ic := I ◦ gc, ∆h :=
I−1 ∗ (I ∗h− Ic ∗h), hc := h+∆h, g = E(r,0)◦exp(hc ·∆t)◦E(0,x), h = hc+∆h.

The next function describes how the velocity of a particle changes if during
the time span ∆t it is acted upon by the torque ~T relative to the center of
mass and the force ~F on the center of mass. As a descriptor of this situation



1

we use the object dE(T · ∆t,F · ∆t) which is an increment in momentum
(which here means a pair of angular momentum and linear momentum).
So that we have the proper argument for the following function, for which
we use explicit typing of the argument

react(dE h̃) : ∆h := I−1h̃, h = h+∆h

The full time step is formed from these two building blocks in a manner that
not only superficially resembles a Feynman graph of first order

step(dE h̃) : freeStep(∆t/2) , react(h̃) , freeStep(∆t/2)





Behavior of linear momentum, energy, and angular momentum of a
magnetized particle in a homogeneous magnetic field.

Linear momentum, energy and Ly are conserved quantities in this situa-
tion. In the model the energy fluctuates with unnoticible trend and with an
amplitude that is proportional to dt2.

Ly fluctuates with an obvious constant trend and an amplitude that is pro-
portional to dt.

Linear momentum is conserved also in the model.



1



Fast Rigid Bodies Integrator (FBI) for the many-body system

1. Input: A list p1, . . ., pd of objects of type Par, time t , and time step ∆t.

2. First step: For each particle p of the list do: freeStep(∆t/2).

3. Interaction step: Let Par(σ,g,h) be the generic element of the list.
Define objects r and x of type R3 such that g = E(r,x). From σ get
the data c1, . . .,cn and r1, . . .,rn and j. From these compute the list
x + c1 ∗ r, . . .,x + cn ∗ r of centers of spheres with radii r1, . . .,rn, and
the magnetic moment j∗ r placed at x, together with the electric point
charge q. To define interaction between particles we single out a sec-
ond generic particle p̃. Particle p feels a force (on its center of mass)



1

and a torque (arround its center of mass) due to the presence of p̃.
This force and torque arises as a sum of electric, magnetic, and elas-
tic contributions. For the first two, physics gives definitive prescrip-
tions; for the elastic part we use Heinrich Hertz’s formulas for elastic
spheres in forced contact. An important point is that the presence of
further particles simply adds their forces and torques to the contribu-
tion from p̃. Thus we know how to find for p a total force and total
torque which p feels due to the presence of all other particles. If there
are external electric and magnetic fields, these add to the force and
torque on p in a straightforward manner. If the external fields depend
on time, their values at time t +∆t/2 have to be taken for this com-
putation. The final values T and F of torque and force on particle p
determine h̃p := dE(T ·∆t,F ·∆t). So the following prescription is well
defined: For each particle p of the list do: react(h̃p).

4. Last step: For each particle p of the list do: freeStep(∆t/2).



2

This algorithm is modified from the explicit midpoint method for ordinary
differential equations. It shares the salient feature of this method that forces
and torques have to be computed only once in a time step, and that the
time step may change from step to step.

In my toning application there are, in addition, adhesive forces, forces be-
tween induced electrical dipoles, forces generated by electrostatic mirror
charges from conducting enclosing walls, elastic and adhesive forces from
enclosing walls, friction forces between particles, particles and walls, and
particles to air. Lorentz forces are ignored so far.



A detour on graphical representation

Bodies as graphical objects are described here by metrical indicator functions which are
defined everywhere in space, take negative values inside the body, positive values outside
the body, and an approximate value for the distance from the surface for points near to
the surface.

The metrical indicator function of a sphere is simple:

fSphere(p) = |p− center|− radius

Metrical indicator functions of complex bodies from simple ones are built from ∗

fBody1∩Body2
= Max( fBody1

, fBody2
)

fBody1∪Body2
= Min( fBody1

, fBody2
)

It is not difficult to develop efficient algorithms for finding the point where a given ray hits

the surface of a body first.

∗Here, Max and Min were erroneously interchanged until 2017-05-18



The set union of two non-spherical bodies

An acceptable ray tracing algorithm has to cope with sharp edges. Patterns
(that are needed for the anaglyph method to work) are here not defined
only on the surface but in space. Here the periodic reflectance pattern
forms a cubic lattice in space.



Some aspects of the toning model



Holding the electrical potential constant on the toning shell



Holding the electrical potential constant on the toning shell



Holding the electrical potential constant on the toning shell



The potential of a rectangular charge patch spoiled by a programing error



Now correct



Potential created by the particles alone



Going parallel



Partitioning of the nip space



Defining a coarse grained mean field by a wide lattice of sources



Results



The basic insight after having passed the patenting process



On Simplicity

... the tentative postulation of the simplest formal solution of a problem is
a conventional and frequently successful mode of procedure in theoretical

physics.

From: Herbert B. Callen: Thermodynamics, Wiley 1960, p. 24

******************

When consistency is a must, simplicity is the result of hard work

Anonymus

Last modification: 2017-05-18


