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This talk is about a method for solving the numerical initial value problem of the
time-dependent Schrödinger equation with a Hamiltonian which may depend on time.
It is only for time independent Hamiltonians that I was able to describe the accuracy
and stability properties in the form of proven theorems. All practical experience shows,
that the time-dependent case behaves equally well. In this method, the Hamiltonian
comes in only as a hermitian linear operator and not as a mathematical expression
that can be reordered or otherwise transformed in order to speed up the necessary
calculations. In all cases where it is a feasible computational task to apply the Hamilton
operator to a generic state vector, my suggestion is to try this method as a workhorse.
It can be considered a ‘Simpson’s rule’ for quantum dynamics.

There is no way for me to explain the matter from a technical point of view in 10
minutes, so I’ll try to convey the basic idea of the method.

This idea is to treat quantum dynamics in closer analogy to classical dynamics as one
usually does. One may argue, that there is a fundamental difference between classical
and quantum dynamics since the Schrödinger equation is first order with respect to the
time derivative, whereas classical mechanics is inherently second order, since forces
determine accelerations and not velocities. This is not so clear a distinction as one
might think, since also classical mechanics can be given the first-order form of canonical
equations.

I propose the opposite of such an approach, namely to give quantum dynamics a
second-order form by simply differentiating the time-dependent Schrödinger equation
with respect to time. To be sure, this is only a heuristic device for defining a computa-
tionally feasible approximation and not a proposal to change quantum mechanics. For
the resulting equation for the second time derivative of the wave function, I then carry
over and use the integration methods from the field of granular matter dynamics which
I have been using in an industrial project concerning simulation of the toning process
in electro-photographic copiers/printers over some years [4]. Such methods come in
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many variants and may be referred to as midpoint methods, leap-frog methods or Verlet
methods. A particular useful such variant is defined and studied in detail in [1].

Let us write the time-dependent Schrödinger equation as

�
ψ(t) =− iH(t)ψ(t) =: D(t)ψ(t) (1)

and ask for a discrete-time state updating algorithm

(t,ψ) 7→ (t,ψ) , (2)

where t is a point in time close to t. It could be not only later than t (which is the most
natural situation) but could also be earlier. Before we see the algorithm, we should
understand its intended usage: it allows to construct by iterated application a sequence
of states — a time-discrete trajectory — which, if the time-values associated with the
trajectory points are sufficiently close together, give an approximate representation of
the time-continuous trajectory as determined by (1). To start this trajectory-creating
process we need a simple additional step which introduces and initializes an additional
state-like quantity, the ‘quantum velocity’ φ which then for all further steps will serve
as an efficient mediator between the important algorithmic steps. This being said, it is
clear that our algorithm actually is of the form

(t,ψ,φ) 7→ (t,ψ,φ) , (3)

with the natural definition of a velocity

φ := D(t)ψ (4)

for the time t to which the first state ψ of our initial value problem belongs.
Optimizing formal elegance, I express the algorithm in programming style which

allows changing values of quantities without changing their name: Changing the time
from t to t = t +h = t +2τ induces a state change given by

t += τ

ψ += τ φ

φ += hD(t)D(t)ψ+D(t + τ)ψ−D(t − τ)ψ

ψ += τ φ

t += τ .

(5)

Here, of course, a += b means that a is to be changed to a+b and it is understood that
the values of t, ψ, and φ at the end of the algorithm just define (t,ψ,φ) of (3).

Let us now assume that the Hamiltonian does not depend on time. Then (5) simplifies
to

ψ += τ φ

φ += hD2
ψ

ψ += τ φ

(6)
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which is a very natural scheme when interpreted in terms of velocity φ and acceleration
D2 ψ. The obvious decomposition of (6) into three steps can be written as a composition
of linear maps: (

ψ

φ

)
=

(
1 h

2
0 1

)(
1 0

hD2 1

)(
1 h

2
0 1

)(
ψ

φ

)
=: Uh

(
ψ

φ

)
. (7)

The basic properties of the method can be expressed as properties of the linear operator
Uh defined by (7):

1. reversibility, i.e. Uh ◦U−h = 1

2. symplecticity, i.e. Uh commutes with
(

0 1
−1 0

)
3. second order method, meaning considered clear from numerical analysis

4. exact energy conservation

5. unitarity up to corrections of order h2

To define what the exact meaning of the last two items is, we consider a discrete trajec-
tory of constant time step h.(

ψ0
h

φ0
h

)
:=

(
ψ

Dψ

)
,

(
ψ

n+1
h

φ
n+1
h

)
:= Uh

(
ψn

h
φn

h

)
, n ∈ N , h ∈ R . (8)

The quantities related to unitarity and to energy conservation are the scalar products
〈ψn

h |ψn
h 〉 and 〈ψn

h |φn
h 〉, which correspond to the constant quantities 〈ψ(nh) |ψ(nh)〉 and

− i〈ψ(nh) |H ψ(nh)〉 in an exact solution of (1), and thus should be approximately con-
stant. As descriptors for the deviations from constancy, I introduce the quantities

ν(ψ,n,h) := 〈ψ
n
h |ψn

h 〉−〈ψ
0
h |ψ0

h 〉 , ε(ψ,n,h) := 〈ψ
n
h |φn

h 〉−〈ψ
0
h |φ0

h 〉 . (9)

It it clear from (8) that the right-hand sides of these two defining equations are in fact
determined by ψ in (8) and n, and h, so that ν and ε are well-defined functions. Strict
energy conservation means that the imaginary part of ε is zero (remember that ε is
related to matrix elements of D = − iH). This is a direct consequence of symplecticity.
Unitarity would imply that ν would be zero. It turns out that ν vanishes only in the
limit h towards zero and is of order h2. The same is true for the real part of ε. These two
functions turn out ([2]) to be related by the remarkable (and cryptic) equation

nh ε(ψ,n,h) =
(

h
2

d
dh

−1
)

ν(ψ,n,h) . (10)

For details see [2], [3]. The basic method of investigation is to use a spectral decompo-
sition of H to derive an explicit representation of the n-th power of Uh.
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There is some irony at work here: we make heavy use of the spectral decomposition
of H to derive the properties of an integration method that is made to avoid spectral
representation (diagonalization) of the Hamiltonian in its own implementation.

In pedagogical computer experiments concerning a single particle in one dimension,
the diagonalization of a general Hamiltonian is no problem for, say, 100 spatial dis-
cretization points. The need to avoid diagonalization occurred to me when I turned
to a particle in two spatial dimensions, or — probably more instructive — to two par-
ticles, each living on a linear lattice. If these lattices cross each other, a particularly
instructive system (‘crossway-system’) results, which is studied [2]. Independent from
questions of computational burden, the diagonalization method can’t handle time de-
pendent Hamiltonians, which very naturally occur when the interaction picture is being
employed.

Finally, I would like to warmly recommend the programming language C++ for flexi-
ble and fast development (implementation and test) of quantum dynamical algorithms.
Ref [2] contains some arguments to support this. Further, I offer to all of you the possi-
bility to use my broad computational physics C++ class system (2500 printed pages of
C++ source code). I call this system C+- since it provides within C++ the logic which
Bjarne Stroustrup, the creator C++, may have envisioned when he wrote: ‘Within C++,
there is a much smaller and cleaner language struggling to get out’ ([5], p. 207). Please,
contact me if you are interested in such stuff.
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