
On the C+− project

Ulrich Mutze

www.ulrichmutze.de

October 4, 2022

This document is not up to date. Meanwhile some important deviations from ’old
C++’ (before C++11) that I introduced, are now part of the standard. This is partic-
ularly the case with the move facility for cheaply returning large objects out of function
bodies that I welcomed as a replacement for the copy on write solution. Further the tem-
plate function<> together with bind and lambda expressions allows to treat ’functions
as values’ as conveniently as my F<> templates. Also both methods cooperate nicely.
In times of such a rapid development of the language as we experience presently it

would be hard to update the content before the next ’revolution’ would have to be
considered.
The aim of this project is to represent an interesting part 1 of computational physics as

a system of C++ classes and also to provide a corresponding C++ representation of the
mathematical structures and methods that are needed to implement specific physical
systems and their behavior. Also 2D and 3D visualization and image processing are
treated.
Presently this physical and mathematical class system comprises 3.0 MB of zipped

code in 275 files. As far as physics is concerned, it deals mainly with electrostatic
and magnetostatic fields, mechanics of rigid bodies, and non-relativistic quantum me-
chanics of many-particle systems. The mathematical framework which comprises linear
algebra, interpolation, calculus, fast Fourier transform, minimization, geometry, propo-
sitional logic, hereditarily finite sets, and graphical primitives (including alphabets) is
even larger.
By means of the program pdflatex all code can be listed in a single file

cpmlisting.pdf,[17], of about 3200 pages and 4.9 MB. For each of the files there is a
chapter, registered in a table of content. Due to the fast searching abilities of modern
PDF-readers one has all code details at ones finger tips.
Although the material was accumulated over an extended period of time (starting

in 1989), the style of presentation and coding is fairly homogeneous since all major
reorganizations which the system had to survive during its growth were extended to the
whole of the existing material.

1actually, the one on which I happened to gain some experience

1

It is the main purpose of this article to explain and document the principles of this style
in order to enable extensions of the class system without unnecessary obscuration of this
style. A further intent is to invite readers to download the code and to experience how
their own C++ programming can take advantage of the many man years of programming
labor condensed in this code. In the last section of this article I’ll come back to this
point.

1 On the C+− programming style

As Bjarne Stroustrup says: ‘Within C++ , there is a much smaller and cleaner language
struggling to get out’ ([4], p. 207). And, ‘I think a smaller language is number one on any
wish list for C++ . . . ’ ([4] p. 198). With all the C++ code in use, and the expectations
of the C++ community concerning continuity, C++ should not be expected to get ever
cut down to such a smaller and cleaner language. What can be done, however, is to
figure out the subset of C++ which supports a preferred programming style. To cite
Stroustrup again: ‘From one point of view, C++ is really three languages in one:

� A C-like language (supporting low-level programming)

� An Ada-like language (supporting abstract data type techniques)

� A Simula-like language (supporting object-oriented programming)

. . . There always is a design choice but in most languages the language designer has made
the choice for you. For C++ I did not; the choice is yours’ ([4] p. 199).
It is in the spirit of such statements, that I like to consider the system of C++ classes

and functions to be described here as a programming language, named C+− . This
name 2 is to express that the language results from C++ by taking away (actually
encapsulating) language constructs.

1.1 No pointers

For instance, in C+− one never needs the address operator & or the dereferencing
operator * or the operators delete and delete[]. In particular one is unable to create
bad deletes — common sources of disaster in C++ programming. Unlike the situation
with a new standalone programming language one needs no separate compiler for C+− .
And, all features of the good old mother language C++ remain available for situations
for which C+− turns out not to provide the appropriate tools 3 . As is clear to every
C++ programmer, C+− cannot simply be a programming style guide saying that one

2the programming language joke http://www.danielsen.com/jokes/cplusminus.txt became known to
me much later

3Whenever I encountered such a situation, I added the tools, to the effect that it no longer happened
for quite a while in the core material. Actually, in October 2010 a major internal concept shift took
place in providing the basic array template V with an arbitrary index range. Prior to this change
one had a template Vl with indexes starting at 0 and the template V with indexes starting at 1.

2

should avoid pointers and references. This would come close to saying that one should
avoid all non-trivial programming. So, C+− has to provide the tools for handling
the problems that normally are solved by pointers, such as looping over heterotypic
collections of objects. To be specific, the C+− tool for this task is the polymorphic
vector template Vp<> ; the normal (homotypic) vector template is V<>. A typical loop
over the index range of a vector v reads

for (Z i=v.b();i<=v.e();++i) v[i]*=2;

where Z is the C+− alias for int; R is the C+− alias for double 4 . Of course, the
implementation of V and Vp relies on pointers, only the interface is free of them. The
simplest constructor such as for vectors x and y in

Z n=...;

R t=...;

V<R> x(n,t);

V<Z> y(n);

have valid indexes starting with 1. The statements

x.b_(0);

y.e_(n-1);

turn x and y into arrays with valid indexes

i ∈ {0, ... , n− 1} .

Code such as

R sum=0;

Z i,j;

for (i=x.b(),j=y.b();i<=x.e();++i,++j) sum+=x[i]*y[j];

works irrespective of index shifts for x or y.

1.2 Values, values, values . . .

The problems that led me to develop the C+− programming style arose in industrial
engineering projects, see Figure 1, and in personal work on computational physics and
constructive mathematics. It was not so much the problem field that shaped this style,
but the attempt to write programs that represent natural reasoning as directly as pos-
sible. Although the evolving style appeared to me for a long time as a bundle of loosely
related tastes and preferences (e.g. for short names, so that int and double get renamed
to Z and R as encountered already), it turned out to allow a succinct characterization
in terms of C++ class terminology: Consider a class X that behaves as much as a
fundamental type (e.g. int, alias Z) as possible: Obviously it should have

4There is no relation to the well-known statistics oriented software system named R. Of course, the
association of ‘R’ with the set of real numbers is much older than the R software.

3

Figure 1: Technical Reports which define a part of the problem field on which C+− grew.

1. a default constructor which allows to say X x; to the effect that now object x

exists and is of type X,

2. a copy constructor which allows to say X y=x; to the effect that we have in addition
to x an X-typed object y which has the same state as x,

3. an assignment operator which allows to say y=z; for any X-typed object z to the
effect that now y has the same state as this z.

Further, an existing instance of X should not change its state unless by action of code in
which it ‘appears personally’ — with its own name mentioned — as y in the foregoing
y=z example. By the same token, the code x=y; y.changeThis(); should not change
x, although it does so in Java, C# , Ruby, Python, and in Julia. Let us call a class
X that satisfies these requirements a ‘value class’, and each instance of a value class a
‘value’. With this notion the C+− main strategy can be expressed as follows:

� Whenever a class is to be defined, try hard to make it a value class.

� Whenever a class template is to be defined, ensure that it defines a value class
whenever the template arguments are value classes.

To put these rules into perspective, we note that a class X, the data members of which
all are values, is itself a value class with the definition of the destructor, the copy
constructor, and the assignment operator which the compiler provides automatically if

4

no user-defined definitions interfere. X(){} of the default constructor and the implicit ly
provided by the compiler) definition of a copy constructor and assignment operator. So,
values are already privileged by the C++ language definition. Restricting the language
to them (and providing replacements for pointers, which are non-values par excellence)
has a chance to make this ‘smaller and cleaner’ language Stroustrup speaks about.
C+− has value classes which improve the C++ concepts of function pointers, and of file
streams. Further, there are value classes for graphical windows and for graphical objects
of various kinds.
In analyzing a general C++ program, understanding the values under consideration

is the easy part and understanding the pointers and the references can be difficult. In a
C+− program there are only values, and the difficult part is missing by design.
This characterization of values does not imply that values are passed to functions as

‘call by value’. Actually, all C+− functions call class-typed arguments as references and
in virtually all cases as constant references. Thus copying the probably large objects to
the function stack never takes place.

1.3 Reference counting and ’copy on write’

However, in working with value objects it is easy to ask for copies of objects that could
be replaced by mere references if the value nature of the quantities would not give clear
directions to the contrary. For large objects this may cause performance problems.
C+− considers this not a problem for those objects which get their data content by
code that introduces constant-size data with an individual identifier for each, as in

class X{ R a,b,c,d,e; ...};,

and it provides a radical solution for cases where memory gets allocated under the control
of variables such as in

Z n=...; V<R> v(n);.

This is achieved by having a single class template V<> for dynamic memory allocation in
C+− and by letting this class implement ‘reference counting’ and ‘copy-on-write’ — the
well known remedy for the superfluous copying problem. Also the other C+− container-
like class templates, namely those for building sets and maps are based on (ordered)
arrays (not red-black trees, see [5] p. 241) and thus benefit from the same copy protec-
tion. This is in remarkable contrast to the C++ standard library container classes (e.g.
[8],[7],[5]) which don’t implement reference counting. Therefore, program parts which re-
peatedly do copy construction and assignment on heavy types such as vec<vec<R> >may
run by an arbitrarily large factor faster for vec=V than for vec=vector or vec=valarray
5 . In a given C+− based program one assesses the benefit from using reference count-
ing by experimentally commentarizing the line #define CPM_USECOUNT in file cpmdef-
initions.h. I found some of my programs running much slower with disabled reference

5Surprisingly this is still the case even though class std::vector now (i.e with C++11) is endowed with
the new move functionality

5

counting. But in most of them, there is no significant difference. The slow programs
could be accelerated by the techniques indicated in [8] Section 22.4.7. However, it is the
ambition of C+− to free the user from such low-level considerations.
The C+− container classes take advantage of the freedom to provide full support only

for value classes. The C++ standard library, by the basic intention of C++ to be ‘a
better C’, is not allowed to exclude valid types such as char* from their services. This has
decisive influence on the structure of this standard library as shall be pointed out with
the example of sorting an array. Is there something more natural than saying x.sort()

to an array object x to bring it into ordered form? (Actually, C+− says x.sort_()

to express that x gets changed, Ruby says x.sort! instead.) In the C+− framework
this works since C+− assumes that the the components of x are instances of classes (or
of a fundamental type, which makes no difference due to a template based unification
method to be explained in the next sub-section). If order matters at all for these classes,
its definition has to be given as a part of the class definition. For the C++ standard
library such an assumption is not acceptable since also char[] is a decent C++ type
and the standard library has to provide means to sort objects of this poorly equipped
type. Thus the C++ standard library is forced to define the sorting algorithm as a class-
less function with an iterator as a connecting agent and a function object as template
argument which says how to order chars in the situation under consideration. Who has
worked with this scheme for a while might start to consider it natural and to admire
its universality. Nevertheless, it is forced upon us by adverse conditions, which we are
free to escape — not as C++ , but as C+− . Sorting as a service of an array class
is a sound concept, as may be concluded from how well it works in the programming
language Ruby [11] — and in C+− .

1.4 Unifying the treatment of C+− classes and built-in types

Having both fundamental types and classes in C+− is not ideal. Especially, template
code could be simplified if the fundamental types would be replaced by classes [4], p.
380. The pure doctrine is formulated boldly in [6], p. 777 guideline 43: ‘Avoid C’s
built-in types. They are supported in C++ for backward compatibility, but they are
much less robust than C++ classes, so your bug-hunting time will increase.’ All my
experiments with class-typed numbers were not very encouraging due to considerable
speed loss of programs. So I decided to continue to use the built-in types, particularly
type double as a work horse for fast floating point arithmetic 6 . On the other hand, to
be restricted to the numerical precision supported by double numbers is unsatisfactory
for many problems and for two such problems I became interested in autumn 2008:

1. There are well-behaved step-wise solution algorithms (integrators) for dynamical
systems which always produce reversible discrete trajectories even if the true con-
tinuous trajectories are not reversible. To avoid a hard contradiction the discrete

6Experiments in May 2012 under Linux and g++ 4.6.3 gave only a few percent performance loss when
R was replaced by a wrapper class.

6

algorithm escapes into extremely large numbers which transcend the limitations
of double and long double [12].

2. There are dynamical systems which exhibit a symmetry, such as mirror reflection
symmetry, which gets lost due to numerical errors surprisingly fast. Only increas-
ing the numerical precision allows one to see symmetric motion over a an extended
period of time. An animated demonstration of this behavior is to be seen on my
home page [15].

I first tackled these problems by means of the programming language Ruby since here
arithmetic with arbitrarily precise numbers is readily available with the Ruby class
BigDecimal and the Ruby module BigMath, both created by Shigeo Kobayashi. Never-
theless, coding dynamical system evolution in a manner that switching between inherent
floating point precision and arbitrarily selected precision becomes possible without much
ado asked for some additions to these Ruby tools. These additions are now available
for all Ruby users from [13]. A contribution by Roger Pack to my Ruby forum discus-
sion: Proposing an arbitrary precision class building on BigDecimal and being derived
from Numeric hinted to similar activities in C++ and it was class mpreal by Pavel
Holoborodko [14] which looked particularly useful to me. It provides a simple user inter-
face along the line of thinking that also underlies my Ruby class AppMath::R. Actually
it turned out that replacing C++ type double by class mpreal in all C+− code was
quite feasible and enforced only minor code modifications to satisfy my two ’reference
compilers/linkers’ which at that time were Microsoft Visual C++ 2008 Express Edition
and g++ 3.4.4 (cygming special). The principle which makes mpreal replaceable with
double in virtually all expressions is that it overloads arithmetic operators for all rele-
vant C++ built-in types as in the following small section of mpreal.h where addition of
any number to a mpreal-number is declared:

const mpreal operator+(const mpz_t b, const mpreal& a);

const mpreal operator+(const mpq_t b, const mpreal& a);

const mpreal operator+(const long double b, const mpreal& a);

const mpreal operator+(const double b, const mpreal& a);

const mpreal operator+(const unsigned long int b, const mpreal& a);

const mpreal operator+(const unsigned int b, const mpreal& a);

const mpreal operator+(const long int b, const mpreal& a);

const mpreal operator+(const int b, const mpreal& a);

I never considered this method an option and thought that one should avoid the need
for so many function definitions by relying on automatic type conversions. This however
created a lot of unexpected ambiguities in expressions occurring in my huge C+− code
base, for which fixing was in no case difficult but, as a consequence of the large number of
defective expressions, very tedious. So I came to admire the brave and clean approach 7

of P. Holoborodko and decided to make replacing type double by class mpreal an option
in C+− . Since in C+− type double appears always under the alias name R, this is
done easily by switching the definition of R which is given in cpmnumbers.h and which
is partially shown here:

#if defined(CPM_MP) // MP stands here for ’multiple precision’.

// a typical line to appear in cpmdefinitions.h is

// #define CPM_MP 32

// where the number gives the number of decimal digits.

7The most recent version of mpreal.h takes advantage of type conversions to some extend.

7

// In projects which use cpmapplication.cpp this number

// can be overridden in cpmconfig.ini without causing a need for

// recompilation. The expected entry there is of the form:

// numerical precision // section

// Z val=64 // value

// mpfr::mpreal is a wrapper class by Pavel Holoborodko to the

// MPFR function system. See

// http://www.holoborodko.com/pavel/

// This class has an interface to other

// C++ types which is very similar to that of type double.

// So an algorithm coded in conventional style will still work

// when type double is replaced by class mpfr::mpreal. Since the

// information content (number of digits) can be set ’arbitrarily’

// large, there is no longer a fundamental difference between

// class mpfr::mpreal and the mathematical concept of the real

// number field. See the section ’motivation and rational’

// in the documentation to class AppMath::R in

// http://www.ulrichmutze.de/rubystuff/doc_rnum/index.html

// for more motivation concerning this point of view.

#define CPM_ mpfr

// CPM_::sin(r) (i.e. mpfr::sin(r)) is the full name of the sine

// function for argument r \in mpfr::mpreal. This is then a clear

// distinction from e.g. CpmRoot::sin(C const&).

typedef mpfr::mpreal R;

// Defining type R, the real type with which present C+- code uses

// in all places where floating point values are needed. No longer

// I use floating point types of multiple and fixed precision (such

// as R together with Rh or R_) in parallel.

#else

// Then we don’t need the multiple precision libraries and get

// more speed. This was the only mode of C+- till March 2009. We have

// the choice between double (64 bit) and long double (80 bit on most

// systems) as a definition of type R.

#define CPM_ std

// Again, CPM_::sin(r) (i.e. std::sin(r)) is the full name of the

// sine function for argument r of type double or long double.

#if defined(CPM_LONG) // then: typedef long int Z

typedef long double R;

#else

typedef double R;

#endif

#endif

After all, a common infrastructure for all C+− types cannot be achieved by providing
a common base class for all of them, since certainly Z and probably R is not a class
at all. Instead, C+− provides an efficient template-based mechanism to handle value
classes and fundamental types on equal footing. It might be instructive to describe
this mechanism here for the example of input from streams and output to streams —
a topic which often is referred to as marshaling. A more technical description is in the
commentaries to class template IO<> in file cpmnumbers.h. There is a particular issue
in marshaling that is addressed in C+− : Data content of files becomes much more
useful if it is allowed to contain comments that do not interfere with the data content.
C+− knows the concept of a comment line in a data file; the first non-white-space

8

character of such a line is ’/’ or one of the other characters singled out by the following
function

bool CpmRoot::startsComment(char c)

{ return c==’/’ || c==’*’ || c==’;’ || c==’#’;}

Thus a single slash would be sufficient to mark a line as a comment, but all comment
lines generated automatically by C+− use //, so that these look just like comment
lines in C++ source files. Of course, a user of C+− source code is free to change the
definition of this function according to his needs. This will change the concept of a
comment line whenever it appears somewhere in C+− code — in accordance with one
of the C+− guiding principles: Each concept should be defined in a single place. With
the advent of namespaces, this place needs no longer be a class; it can also be a class-less
function in a namespace, or even data in a namespace. Comments will be automatically
inserted when data of an aggregated data type get written to files: Suppose that we
have in a program a quantity x of type V<V<R> > and that some unexpected behavior
of this program hints at the possibility that this quantity did not get the value it was
expected to get. We simply add a statement cpmdebug(x); to our code and expect to
get a readable account of this quantity on the basic logfile cpmcerr.txt. Assume that
x was created as V<V<R> > x(3,V<R>(2)); and — by some misconception in a control
structure — has still its initial value. This then can be seen on cpmcerr.txt as follows:

C+- debug: x=//V<V<double>> begin

//IvZ

3

1

//V<double> begin

//IvZ

2

1

0

0

//V<double> end

//V<double> begin

//IvZ

2

1

0

0

//V<double> end

//V<double> begin

//IvZ

2

1

0

0

//V<double> end

//V<V<double>> end

Here we see that writing a V on file has the form typename begin ... typename end
which is very convenient for large vectors. The first data item to be written is the
index range which is of type IvZ (interval of integers). This type corresonds to class
Range of Ruby but defines more useful operations, such as the lattice operations join and
meet, than Ruby’s Range. The data characterizing an instance of IvZ are the number of

9

elements (its cardinality) and the first (lowest) of its elements. After these data the list of
components follows. In our case, these components are instances of V<double> and can
be recognized as such. Their components are not preceded by a typename since they are
simple numbers. The names of classes appearing here do not rely on the typeid system
of C++ which typically gives very long names since all qualifications are included. This
output to the log file comes finally from a call to the stream shift operator << as is clear
from the definition

#define cpmdebug(X) cpmcerr<<endl<<"C+- debug: "<<#X "="<< X <<endl

// useful for placing temporary debugging statements into ones code.

// From Bruce Eckel: Thinking in C++, Prentice Hall 1995, p. 325

in file cpmtypes.h. For most C+− classes, the the stream shift operator << is defined by
the declaration/implementation macro CPM_IO, see section 4 and file cpminterfaces.h, in
terms of the class template IO<> as

friend std::ostream& operator<<(std::ostream& out, Type const& x)

{ CpmRoot::IO<Type>().o(x,out); return out;}

This becomes active only in classes which employ a macro of the CPM_IO-family. It is
not active for aliased built-in types like Z and L and for classes which know nothing from
C+− such as std::string or mpreal. For these latter types the macro cpmdebug thus
will call their own operator << and this outputs only a value and no comment which
indicates the type name of the value. Notice that writing a title together with data
is acceptable only if the corresponding reading process >> is defined such that it reads
over these titles. Otherwise one would be unable to retrieve written data. Since writing
human-readable titles in addition to the data enlarges file size, and also makes no sense
in writing well-understood data that need not be read by any human, it can be disabled
by letting the macro CPM_WRITE_TITLE undefined in file cpmsystemdependencies.h. The
definition of class template IO<> is

template<class T>

class IO{ // input output class template

public:

IO(){}

bool o(T const& t, ostream& str)const

{ return t.prnOn(str);}

bool i(T& t, istream& str)const

{ return t.scanFrom(str);}

};

This definition is valid for all types T for which there is no re-definition (specialization
or partial specialization in template parlance). If T is not a class, the previous definition
cannot apply since then there are no member functions and the terms t.prnOn(str) and
t.scanFrom(str) are not defined. Also if T is a class (e.g. mpreal) but does not define
member functions prnOn and scanFrom we are able to make IO<T> defined by providing
a so-called specialization, or — if T itself is a class template — a partial specialization.
For the important case that T is Z the specialization is

template<>

class IO<Z>{ // specialization of IO for T = Z

public:

IO(){}

bool o(Z const& t, ostream& str)const

10

{ return CpmRoot::write(t,str);}

bool i(Z& t, istream& str)const

{ return CpmRoot::read(t,str);}

};

Here the function CpmRoot::read is defined in a way that it reads over comments. See
the definition in cpmnumbers.(h,cpp) for details. Analog specializations are given for
IO<double>, IO<float> and — if CPM_MP is defined — also for IO<mpreal>. For these
cases the term CpmRoot::read(t,str) is defined by overloading function read. If T
is a class, but has no member-functions prnOn and scanFrom, one also has to define a
specialization, as it is done here for std::vector to let it cooperate with the C+− array
classes:

template<class T>

class IO< std::vector<T> >{ // ’partial specialization’ , since the

// template parameter T implies that some ’generality’ remains

public:

IO(){}

bool o(std::vector<T> const& v, ostream& str)const

{ return CpmArrays::V<T>(v).prnOn(str);}

bool i(std::vector<T>& v, istream& str)const

{

CpmArrays::V<T> vl;

bool res=vl.scanFrom(str);

v=vl.std();

return res;

}

};

Here the definition of prnOn and scanFrom is naturally carried over from V<T> to
std::vector<T>. C+− does not aim at integrating the standard library containers in
so far as inserting any standard container class as template argument into a C+− class
template provides for the resulting class the same functionality which it would provide
for a C+− class as argument. The most intimate connection of C+− classes with
standard container classes is with class std::vector<>. For small types as template
arguments, such as Z, R, and C the class std::vector is rather efficient and it is consid-
erably faster than V<> if appending of components occurs on a regular basis. This is the
special demand for which std::vector, unlike all C+− arrays, has special provisions
built in. V<> can efficiently be converted to std::vector<> back and forth. Also the
class std::map<> seems to be indispensable in some situations as it was found for small
types as template arguments considerably faster (I observed a factor of 13 in a quantum
mechanical many particle application) than CpmArrays::M<> for the same arguments.

1.5 Functions as values

There is an important facility in C+− which is not 8 present in C++ . For value classes
X and Y there is the value class CpmFunctions::F<X,Y> of function objects f: X->Y (i.e.
for any instance x of X, f(x) is an instance of Y). This then implies that we have two ways

8With C++11 we have function⟨Y (X)⟩, which, however, doesn’t fully behave as a value class.

11

of incorporating functions in classes: The traditional way of using member functions or
the new way of using F<>-typed data members 9. Unlike member functions, these
can be set in constructors and modified by non-constant member functions. The basic
dichotomy with classes, to have data members and member functions seems to fade
away with this mechanism. C+− continues to organize most of the class functionality
in member functions. Sometimes, however, classes become more functional by having
function-typed data members. This is especially the case for classes which describe
shapes of material bodies or fields in space. In both cases the preferred representation
in not by discrete nodes or discrete points carrying field values but by functions that
can directly (i.e. without involving interpolation) be evaluated at any point in space.
For bodies, the representation is a special case of the well-known implicit representation

of a surface by an equation of the form f(x)=0: here f is chosen such that for points
x which are near the surface of the body, the value of f(x) equals approximately the
distance of x from the surface. In any case, it is positive for points outside the body
and negative for interior points. I call such a function a metrical indicator function of
the body. For two bodies, each described by a metrical indicator function, the set union
is described by the maximum of the two indicator functions and the set section by the
minimum. Thus it is easy to obtain metrical indicator functions for a large variety of
shapes, whereas functions that give the exact distance to the surface could be given only
for very simple shapes like spheres, cylinders, and parallelepipeds.
For fields, the definition of the field strength at arbitrary points is derived from the

field sources, which are assumed to be given. For sources such as point charges, dipoles,
homogeneously charged rectangular surface patches, or homogeneously magnetized rect-
angular parallelepipeds computationally efficient formulas are implemented.
To come back to the general aspects of functions as data: The spirit of ‘object ori-

entation’ guides us to discover the true distinction between normal data elements and
function-type data elements. We have to consider their behavior, i.e. the methods which
they allow to define: reading from streams and writing to streams (or files) is natural
for normal data elements. The same is true for the notion of equality. Both concepts
are far from trivial for purely functional data, since pieces of code cannot be handled in
C++ as data in any direct manner. For a definition of equality of functions, even access
to the defining code would not solve the problem, since equal functions does not mean
equal code.
In many practical situations functions depend on parameters: For instance, when con-

sidering the distance traversed by a falling body as a function of time, the gravitational
acceleration g enters as a parameter. Now it may happen that we have to consider the
function which has g as the function argument (e.g. when dealing with free fall on vari-
ous planets) and some characteristic duration (say, 1.37 seconds) as a parameter. This
could lead us to define two functions

R ft(R const& t, R const& g){

return g*t*t*0.5;

} // t is the argument, g the parameter

9functions as values are discussed in [9] p. 241

12

R fg(R const& g, R const& t){

return ft(t,g);

} // g is the argument, t is the parameter

F<R,R> st = F1<R,R,R>(9.81)(ft);

// st is the function t |--> 9.81*t*t*0.5

F<R,R> sg = F1<R,R,R>(1.37)(fg);

// sg is the function g |--> g*1.37*1.37*0.5

although we actually deal with two aspects of a single natural law. C+− provides the
tools to create these two functions out of a single definition of the basic law:

R f(R const& t, R const& g){

return g*t*t*0.5;

} // law of free fall coded once

F<R,R> st = F1<R,R,R>(9.81)(f);

// st is the function t |--> 9.81*t*t*0.5

F<R,R> sg = F1_1<R,R,R>(1.37)(f);

// sg is the function g |--> g*1.37*1.37*0.5

The normal way is to make the function depending on parameters a static member of a
class and let the constructors Fn_m generate the paramter-binded forms which are useful
as non-static member functions.

2 C+− applications

It is the philosophy of C++ not directly to support the definition of user interfaces of pro-
grams and interfaces of programs to graphical hardware. C+− , however, should allow
the creation of working programs (applications) and thus cannot hold such a restrictive
position. The application framework provided with C+− only supports applications
which read instructions from one or more files, and write data on files, and show screen
graphics and status indicators during run. User interaction is restricted to canceling
the run, and the program enjoys high priority 10. An application made by C+− tools
alone is primarily an console application but together with the terminal window it opens
a main graphical window entitled ‘Non-interactive OPENGLUT window for <name of
executable>’. There are two versions of the C+− application framework, the second
being a bit more functional and sophisticated than the first one. Using the first one
is done by making cpmapplication.cpp one of the source files of the project and give a
project specific implementation of a function Z main_(void) in the main source file of
the project. (the traditional int main(...) is defined in cpmapplication.cpp in a way
that it calls Z main_(void) after preparatory actions concerning graphics and reading
of input files).

10Of course, all the C+− workhorse classes like arrays, functions, minimizers, integrators, ... can well
be used also to implement interactive programs.

13

For the second version of the framework one needs cpminifilebasapp.cpp as an addi-
tional source file. The main source file of the project has to define a project specific
class which has to be derived from CpmApplication::IniFileBasedApplication. Let
us describe things by the example of project chebyshev, [18]. Here the project specific
content is in the file cpmchebyshev.cpp and is of the following form:

class ChebyApp: public IniFileBasedApplication

{

public:

ChebyApp();

void doTheWork();

};

ChebyApp::ChebyApp(void):IniFileBasedApplication("chebyshev"){}

void ChebyApp::doTheWork()

// does what the name says

// Here comes the project specific part of the code

{

....

}

Z CpmApplication::main_(void)

// In this form the C++ typic function main()(defined in file

// cpmapplication.cpp) expects to see the basic functionality of

// the program.

// Notice that main() in cpmapplication.cpp provides the program

// with its graphical window and a status bar.

// The fact that class ChebyApp is derived from class

// IniFileBasedApplication lets the following short code, although it

// looks like abstract nonsense, do very specific things.

{

Word loc("Z CpmApplication::main_(void)");

Z mL=1;

CPM_MA

title_=Word("chebyshev");

ChebyApp app;

// creates the application class by reading and deploying

// chebyshev.ini

app.run();

// brings the application class to live and action

CPM_MZ

return 0;

}

The files cpmapplication.h and cpminifilebasapp.h give a full description of the C+− application
framework.
This type of application supports what I imagine that a C+− based program will primarily be made

for: to produce data that one really wants to have, e.g. for a diagram in a publication or for deciding a
relevant question. The final form of these data will be created by a ’production run’ and the determinants
of this run have to be documented in a set of files which, by a run identifier appended to their name,
are reliably marked as belonging together. This allows us to retrieve the values of all parameters with
which our results were obtained. These run determinants often result from a development process that

14

includes both design and experimentation. At least in the early phase of experimentation it would often
be inconvenient to create all this documentation material. Therefore a handy way is implemented to
switch between light documentation of experimental runs and full documentation for production runs.
In principle there are three ways to enable experimentation:

� Modifying the program state during run by user interaction.

� Modifying values of initialization data.

� Modifying the program in a way that new control parameters are introduced or that the influence
of existing control parameters is modified.

To organize user interaction with a program in a way that it allows fast and flexible experimentation is
difficult — at least with the GUI systems I worked with so far. In order to let a production run have
all its influencing data well documented, an interactive system has to document its internal state in a
way that also is not easy to achieve in a sufficiently flexible manner. The second way is the regular one:
the values of parameters can be changed in the initialization file(s) and the run documentation will list
all values in readable and commented form. In programs that aim at solving ‘real world problems’ one
will hardly escape the need to go the third way — despite all intended flexibility and universality of
our program. A substantial part of the functionality of the C+− classes was given its present form
in an continued attempt to make this way as convenient and safe as possible. Especially this is true
for the classes Record and RecordHandler, and the reading macros cpmrh and cpmrhf which proved
their power in an engineering project in which several teams submitted their needs to extend the set
of several thousand control parameters on a daily basis. Due to these achievements, this third way is
highly efficient and convenient for C+− . Organizing the code in moderately sized translation units,
reduces the inconvenience of re-compilation. However, re-compilation has also its convenience since,
due to the simple structure of typical C+− statements, oversights are very unlikely to result in code
that compiles. If an error happens at run time, it is not important, even not desirable, that the program
continues somehow. It is very important, however, that it leaves a message on a log file that allows to
identify the problem. This is often much more efficient than working with a debugger.

3 The C+− naming style
The advice of Bjarne Stroustrup ([8], p. 85, 4.10.6) is: Maintain a consistent naming style. These are
the naming rules concerning the C+− project:

1. The header files of the project are named cpm*.h and the implementation files are named
cpm*.cpp. They don’t contain blanks or underscores.

2. All declarations contained in one of these files is placed in a namespace. All these namespaces
have names beginning with Cpm and continuing with at least one upper case letter. A list of all
namespaces may be instructive:

CpmAlgorithms introduced in file cpmalgorithms.h

CpmApplication introduced in file cpmapplication.h

CpmArrays introduced in file cpmm.h

CpmCamera2 introduced in file cpmcamera2.h

CpmCamera3 introduced in file cpmcamera3.h

CpmColCam introduced in file cpmcamera.h

CpmDim2 introduced in file cpmdim.h

CpmDim3 introduced in file cpmdim.h

CpmDimx introduced in file cpmdimx.h

CpmDynSys introduced in file cpmdynaux.h

CpmFields introduced in file cpmfield.h

CpmFonts introduced in file cpmfontgeneration.h

15

CpmFourier introduced in file cpmfft.h

CpmFunctions introduced in file cpmf.h

CpmGeo introduced in file cpmangle.h

CpmGraphics introduced in file cpmviewport.h

CpmImaging introduced in file cpmhistogr.h

CpmLinAlg introduced in file cpmclinalg.h

CpmMPI introduced in file cpmmpi.h

CpmMathFound introduced in file cpmlogic1.h

CpmPala1_3 introduced in file cpmrigbodydyn.h

CpmPala2_2 introduced in file cpmsys2aps.h

CpmPala2_3 introduced in file cpmsys2aps.h

CpmPala2_x introduced in file cpmextractorx.h

CpmPalaAction introduced in file cpmactionprinciple.h

CpmPalaAux introduced in file cpmsysviewer.h

CpmPhysics introduced in file cpmconstphys.h

CpmPhysicsx introduced in file cpmbodyx.h

CpmProperties introduced in file cpmproperties.h

CpmQM introduced in file cpmqm.h

CpmQuantumMechanics introduced in file cpmfieldoperator.h

CpmRigidBodyx introduced in file cpmcomparx.h

CpmRoot introduced in file cpmbasictypes.h

CpmRootX introduced in file cpmtypes.h

CpmStd introduced in file cpmnumbers.h

CpmSystem introduced in file cpmsystem.h

CpmTOP introduced in file cpmsys2datx.h

CpmTests introduced in file cpmtestr.h

CpmTime introduced in file cpmgreg.h

CpmUnits introduced in file cpmunits.h

CpmWaves introduced in file cpmmaxw1d.h

Here the number at the end of some names refers to the dimension of space. Al-
though space is 3-dimensional, a 2-dimensional surrogate ‘flatland’ is often useful
in physical models for faster execution and easier visualization. The namespace
CpmCamera3 deals with generating anaglyph stereo images of spatial physical struc-
tures.

3. All preprocessor defines (macros) begin with CPM_ with all letters upper case. The
macros used as double inclusion guard are the file name with .h replaced by _H_

or _H.

4. Class names (which, as stated above, are all in namespaces) never begin with Cpm.
They always begin with an upper case letter. Some structs, which also are all in
namespaces, have names which are lowercase as rgb, xy, and xyxy in namespace
CpmGraphics. No rules for selecting type names are given. Preference is on short
names, more in the style used in mathematics than in programming. Best example:
complex numbers have to be named C and not Complex or even ComplexNumbers.

5. Data members have not to be public, except of the numerical tuple - classes such
as R2, R3. Their names should end in an underscore 11. This rule is followed only

11It is very convenient to have a typographic indicator for data members (as in Ruby) since implemen-
tation code then can use short identifiers without any danger of interfering with data members.

16

in the more recent classes.

6. The naming of public member functions is governed by strict rules to be described
in the next subsection.

3.1 Naming rules for member functions
In cases where a well introduced name for the concept exists in C++ or the pertinent discipline, we
use this name. (E.g. atan for arctan or gcd for greatest common divisor.) In all other cases we use an
identifier which is derived from a reasonable primary full name 12 by a deterministic rule. The primary
full name has to be clearly stated in the comment to its declaration, preferably in a single line directly
following this declaration, preferably not simply preceded by //, but by //: . In addition to //:, we
rarely use //. and //:: to mark exceptionally short and long names, respectively. Also, the comment
indicators //? and //doc occur to assist script processing. The primary full name may consist of several
words, e.g.

right upper corner .

The corresponding C+− name is formed by a simple set of rules that allow the fluent usage of the name
if the primary full name is memorized correctly. These rules are:

1. Process (contract) the individual words first. Hyphens and punctuation marks are considered as
blanks for this purpose. So ‘right-upper corner’ and ‘right upper corner’ both are treated as the
list ‘right, upper, corner’ of words.

2. If a word is not longer than 4 letters: don’t change it. Else, take the first two letters as they
are and append as a third letter the first following consonant if there is one (notice that we are
considering a word with 5 or more letters) or the next letter else (which then would be a vowel,
this seems never to happen with words of plain English).

3. Concatenate the processed individual words and turn all letters into lower case except the be-
ginning of the second, third, . . . processed word.

This transforms our right upper corner into rigUppCor. This is not a favorable example; in most
cases the name comes out nicer such as rot for rotation, absVal for absolute value, and sqr for
square.

Addition: Sometimes the standard symbol for a physical quantity, such as t for time, should occur
in a function name: the intended full name of such a function could be get t or set t. Applying
the previous rules would lead to getT and setT which would be misleading since one could think that
the function is dealing with getting and setting the absolute temperature T. So we write get_t and
set_t; thus the rule is to precede each lower case one letter symbol by an underscore. A function that
sets x-coordinate x and y-coordinate y could be named in full text set x and y and would lead to
set_xAnd_y, which looks ugly. So it is preferable to consider set x,y as the appropriate full name.
This then goes to set_x_y, which looks good.

4 Member function declarations
Many declarations that should have exactly the same form for many classes are formulated using
declaration macros. The most frequently used such macros are CPM_ORDER and CPM_IO which supply the
declarations and also some in-lined implementation of order-related functions and functions concerning
interaction with input- and output-streams. Such declaration macros are very similar to the mixin
construct of the language Ruby. Here is an example

12in some places also referred to as descriptive full name

17

// sum, where the mutating member function += is primary

#define CPM_SUM_M\

Type& operator +=(Type const& x);\

Type operator + (Type const& x)const\

{ Type res=*this; return res+=x;}

// sum, where the constant member function + is primary

#define CPM_SUM_C\

Type operator + (Type const& x2)const;\

Type& operator +=(Type const& x){ return *this=(*this)+x;}

Reasons for writing Type const& instead of the more common const Type& are given
in [10], pp. 3-4.
For C+− -classes it is normal to have a part of the interface defined by macros. We

thus may see a class declaration like this:

#include <cpminterfaces.h>

class X{

...

typedef X Type;

public:

CPM_IO

CPM_ORDER

CPM_SUM_C

...

};

Notice that an interface in which Type appears as a return value of a function cannot be
directly coded by deriving from a suitable abstract class. Only a combination of abstract
classes and templates allows a macro-less definition. The combination of interfaces has
then to be done by multiple inheritance and virtual functions had to be defined even
for lean workhorse classes. This convinced me that in this case a solution based on
preprocessing is superior to the solutions provided by C++ language means. It should
be mentioned that the usage promoted here refers to macros without parameters and
thus avoids some of the pitfalls associated with macros.
It is highly desirable that the basic logical structure of code should be understandable

without having to look up the declarations of the functions involved. Since the types of
function arguments are obvious from the code, the question is mainly if calling a member
function changes the calling instance or any additional function argument. In C+− ,
the name of a non-constant member function ends in an underscore and virtually always
it does not change arguments (which in these cases are declared as constant references
as mentioned earlier). In the case of exceptions, an underscore followed by a number
appended to the function name indicates the number of an argument slot which is typed
as a non-constant reference. Thus the following declaration (which also demonstrates
the preferred style for comments)

// Some demo classes

class Y; // class X uses Y (and not only Y&)

class X { // demonstrating function naming

...

Y doTooMuch_1_2_(A&, B&, X const&);

//: do too much

18

// Example that demonstrates the influence of the

// argument structure on the function name. Notice the format

// for communicating the primary full name of the function.

...

};

class Y { // demonstrating ...

};

agrees with the rules since function arguments 1 and 2 are non-constant references and
the final underscore says that the function itself is non-constant. Seeing a call

y=x.doTooMuch_1_2_(a,b,x1);

we know without looking to the declaration of function X::doTooMuch_1_2_ that y, x,
a, and b are intended to change their values by this call, whereas x1 is invariant.
It is to be admitted, that in the older parts of the C+− class system the transition to

the most recent version of the naming rules has not been completed so far.
It was stated that C+− functions very rarely take arguments as non-constant refer-

ences. One could see a problem here, since it is a very common programming situation
that a function is expected to output various related objects at once: think of the three
‘components’ making up the ‘singular value decomposition’ of a matrix. The C+− way
to do this is to make use of tuple class templates T2<>, T3<> and the Cartesian product
class templates X2<,>, X3<,,> to create the multiple output as a return value. E.g.

R_Matrix a=...;

T3<R_Matrix> res = sinValDec(a);

R_Matrix u=res.c1();

R_Matrix diag=res.c2();

R_Matrix v=res.c3();

or, if we like to represent the diagonal matrix by the vector of its diagonal elements (i.e.
its singular values):

R_Matrix a=...;

X3<R_Matrix,R_Vector,R_Matrix> res = sinValDecMod(a);

R_Matrix u=res.c1();

R_Vector sv=res.c2();

R_Matrix v=res.c3();

Whenever we seem to be forced to define functions with a complicated structure of
arguments and return value we probably would better define a class. This provides a
clear separation into the main computations to be done upon calling the constructor
and cheap access functions to return the partial results of the main computation. With
the actual C+− implementation of singular value decomposition (see cpmrmatrix.h)
the previous calls read

using namespace CpmArrays;

R_Matrix a=...;

SVD svd(a); // does the work by calling the constructor of class SVD

R_Matrix u=svd.getU();

R_Matrix diag=svd.getW();

R_Vector sv=svd.get_w();

// Both diag and sv are cheap. It depends on later usage which of

// these two data formats fits best.

R_Matrix v=svd.getV();

19

5 Freely available

The reader who considers using C+− classes in his own work should also glance over [16].
The complete system of classes can be downloaded as source code (in zipped form) from
[19]. Listings, project code with makefiles,an also be downloaded from the various links
on the C+− related part of my homepage [15]. Since I do all my C++ programming on
Linux/Ubuntu/g++ I do no longer provide Windows binaries. I’m open to provide help
via email to those who try using C+− as a tool.

References

[1] Keith E. Gorlen, Sanford M. Orlow, and Perry S. Plexico: Data Abstraction and
Object-Oriented Programming in C++. Wiley 1990

[2] Margaret A. Ellis, Bjarne Stroustrup: The Annotated C++ Reference Manual.
AT &T 1990, Addison Wesley 1994

[3] Guido Buzzi-Ferraris: Scientific C++, Building Numerical Libraries the Object-
Oriented Way. Addison Wesley 1993

[4] Bjarne Stroustrup: The Design and Evolution of C++ . Addison-Wesley 1994

[5] Mark Nelson: C++ Programmer’s Guide to the STANDARD TEMPLATE LI-
BRARY. IDG books 1995

[6] Bruce Eckel: Thinking in C++. Prentice Hall 1995

[7] David R. Musser and Atul Saini: STL Tutorial and Reference Guide. Addison-
Wesley 1996

[8] Bjarne Stroustrup: The C++ Programming Language, Third Edition. Addison-
Wesley 1997

[9] Andrew Koenig and Barbara Moo: Ruminations on C++ . Addison-Wesley 1997

[10] David Vandervoorde and Nicolai M. Josuttis: C++ Templates. Addison-Wesley
2003

[11] Dave Thomas et al.: Programming Ruby. The Pragmatic Bookshelf 2005

[12] Ulrich Mutze: An asynchronous leap-frog method.
Mathematical Physics Preprint Archive 2008–197
http://www.ma.utexas.edu/mp_arc/c/08/08-197.pdf

[13] Ulrich Mutze: Arbitrary precision arithmetic as an optional and easily reversible
replacement of Float arithmetic.

20

http://www.ma.utexas.edu/mp_arc/c/08/08-197.pdf

Linear algebra, function visualization, and dynamical systems as examples of ’pre-
cision independent’ coding.
https://rubyforge.org/projects/appmath/

[14] Pavel Holoborodko: MPFR C++
http://www.holoborodko.com/pavel/

[15] Homepage of Ulrich Mutze
http://www.ulrichmutze.de

[16] The C+− Tutorial
http://www.ulrichmutze.de/softwaredescriptions/tut.pdf

[17] The C+− Listing
http://www.ulrichmutze.de/softwaredescriptions/cpmlisting.pdf

[18] code of C+− project chebyshev
http://www.ulrichmutze.de/sourcecode/chebyshev.zip

[19] All C+− code
http://www.ulrichmutze.de/sourcecode/cpmsource.zip

21

https://rubyforge.org/projects/appmath/
http://www.holoborodko.com/pavel/
http://www.ulrichmutze.de
http://www.ulrichmutze.de/softwaredescriptions/tut.pdf
http://www.ulrichmutze.de/softwaredescriptions/cpmlisting.pdf
http://www.ulrichmutze.de/sourcecode/chebyshev.zip
http://www.ulrichmutze.de/sourcecode/cpmsource.zip

	On the C+ -programming style
	No pointers
	Values, values, values …
	Reference counting and 'copy on write'
	Unifying the treatment of C+ -classes and built-in types
	Functions as values

	C+ -applications
	The C+ -naming style
	Naming rules for member functions

	Member function declarations
	Freely available
	On the C+ -programming style
	No pointers
	Values, values, values …
	Reference counting and 'copy on write'
	Unifying the treatment of C+ -classes and built-in types
	Functions as values

	C+ -applications
	The C+ -naming style
	Naming rules for member functions

	Member function declarations
	Freely available

