On notational differences in physics and in
mathematics, preliminary

Ulrich Mutze *
August 15, 2013

It is surprising how differently classical mechanics looks when treated in a textbook
of theoretical physics (e.g. Landau and Lifschitz, vol 1) or in one of mathematics (e.g.
[1], chapter 13). The question arises whether one can explain the differences by a few
principles. Here is my attempt of such an explanation:

In mathematics everything is formalized as sets and functions, whereas in physics one
has variables and expressions (terms).

The connection between these two views is rather simple and intuitive, to the effect
that nobody seems yet to have seen a need to make it explicit.

The goal of the present work is to give the objects used in a physics-style exposition
a clear mathematical definition that makes them amenable to regular mathematical
processing.

In physics one has in mind a situation (a state of that part of the world we are
interested in) which is either described explicitly or is assumed to be clear from the
context. It is a part of reality that the reader is assumed to understand and which is
normally not represented by symbols in a physics-style presentation. Understanding a
particular part of reality allows us to conceive variations and to ask what kind of reactions
between parts such variations will cause. So, in effect, we will not be considering a single
situation but a multitude of relevant situations selected according to the aspects we have
in mind.

To make a connection with mathematical style, we describe the multitude of relevant
situations as a set X. The variables that physics uses to represent physical quantities
then become functions defined on X'. This means that given a relevant situation x € X,
the variable ¢ has a value p(x), which reflects this situation and is determined by it.
The data type of the value may differ from variable to variable, so that vectors, tensors,
and even more complex quantities are allowed as values for physical quantities.

The collection of relevant situations, as already mentioned, is a part of the informal
description in a normal treatise in theoretical physics. The functions such as ¢ provide
the connection between the informal and the formalized part of the concept.

*www.ulrichmutze.de

Today, where for larger and larger parts of reality computer models are established
(such as digital terrain models, 3D CAD models in engineering and architecture) and
the tools are available to build computer models for complex physical systems by means
of object oriented programming languages (such as C++ and Ruby), an interesting
intermediate way of thinking about X suggests itself.

In this view, we consider the informal understanding of the relevant situations as
a guide for the definition of an object oriented computational model of the relevant
situations which then serves as our space X. This then is a concrete formal system
which, however, may use quite different notions then our theoretical description of the
physical system for which X is the space of relevant situations.

These things are easier to explain with a concrete example than in due generality.
So let us deal with a scenario as set up in the first chapters of a textbook on classical
thermodynamics. We want to deal with simple systems which in [2], p. 8, are defined
as ‘systems that are macroscopically homogeneous, isotropic, uncharged, and chemically
inert, that are sufficiently large that surface effects can be neglected, and that are not
acted on by electric, magnetic, or gravitational fields’. In our computational model we
would simulate an idealized version of reality by letting the thermodynamic systems
consist of classical particles with specified conservative interaction potentials. Their
motion would be confined by containers which would be realized as potential barriers
without a particulate structure. The containers would be provided with movable walls
for making their volume variable. Software versions of Maxwell’s demon would allow
to heat and to cool arbitrarily selected parts of the system. Monitoring the impulsive
momentum transfer in particle-to-wall collisions one would have microscopic data from
which ‘the pressure in the container’ can easily be derived. Semipermeable membranes
(implemented e.g. as sieves) may be inserted and allow separating species of particles
which differ in size. Pipes with valves would connect the containers to allow particles to
migrate.

Let this computational model be realized as a computer program together with some
read-only files from which it reads data, and some write-only files to which it writes data.
The output data may include series of digital images so that we may get visualizations
of processes in the form of movies. Of course, during run,the program may show images
and status indicators on a computer screen.

As any autonomously running program, it goes through a series of states, where a state
is simply a distribution of values over all available storage places. When the program
runs in debug mode, any involved storage area can be inspected so that any state of the
program is fully accessible. For a program of the kind as it was sketched here, the states
are too complex, however, that for a human it made sense to study and to interpret it.

The program can serve us as an instructive metaphor for a piece of the real world which
contains just the objects for which our program contains the corresponding software
constructs. By design, ‘object oriented’ programming languages allow us to express the
correspondence between ’real object to be represented’ and its data representation in a
suggestive manner.

Let us look into this ‘real world metaphor’ a bit closer. For this purpose we simplify
the scenario as much as possible and consider a single container, housing a single species

of particles. A state of the program specifies for each of the particles a position, a
momentum, an energy (which may include interaction with neighboring particles and
with walls). Further, for all particles that interact with a wall, the program gives a
force that the wall ‘feels’ as a result of this interaction, and a point on the wall to
which the force acts. When our program runs, these quantities can be observed readily,
whereas for a real thermodynamic system these quantities are hidden to us by their
huge number and the very limited control we can have over individual particles. The
properties that we can easily access and control in real thermodynamic systems are
those treated as thermodynamic quantities (variables) in thermodynamics textbooks. In
our case, the ‘extensive quantities’ U of internal energy, V of volume, S of entropy,
N of ‘mole number’, and the ‘intensive quantities’ p of pressure, T' of temperature,
and p of chemical potential. At least in an elementary context these quantities are
considered constant in time and referring to a certain kind of states only: the equilibrium
states. In our computational model, states change with time but move in the direction
of thermodynamical equilibrium automatically, e.g. [3]. By self-suggesting formulas for
mean-values over many time steps one computes values for the quantities

UV S, N,p, T, u (1)

which come out sufficiently constant, to infer equilibrium values from them. Notice
that getting these values is very much analogous to making measurements in a lab
experiment. What determines the values is a highly complex situation (the program
state) which in detail cannot interpreted with reasonable effort. The results of several
‘measurements’ may give sufficient information on the program state that the results of
further ‘measurements’ can be inferred.

In this example it happens that the computational model of our ‘reality’ used particle
mechanics, whereas the system under actual consideration is a homogeneous one. This
reflects the role of statistical mechanics as a theory from which classical thermodynamics
can be derived.

Not always the two layers need to differ so profoundly. Since all computational models
are finite, discretization will play a role in most cases.

In the following we will develop the framework in which physical quantities are function
on the space X of relevant situations. If we consider dynamical problems it is natural to
consider points z and z’ that describe situations at different points in time as different.
This allows us to consider ¢ime as a real-valued function on X. So, time is treated on
equal footing with physical quantities. Since, as discussed above, it is reasonable to
consider for X rather different options, it makes sense not to assume more than that
X is simply a set. One should be aware that this implies an idealization which, from a
physical point of view is very strong: for sets there is a definition of strict equality

=y = Vfrecz e 2zcy)

Lthe volume of the gas container may slowly change with time and, particulaly if the geometry is
complicated, such as in a Wankel rotary combustion engine, the actual volume may be obtained by
Monte Carlo integration

2The quantor lets z range ‘over all sets’, which does not imply that there has to be a ‘set of all sets’.

which is an equivalence relation, whereas empirical equality, due to its unsharp character
fails to be strictly transitive.

We use the usual Zermelo-Fraenkel set theory which is a monotypic first-order theory
with ‘€’ as the only non-logic basic symbol. (Although my primary source, [4], deals
with the v. Neumann-Bernays form, in which there is a distinction between sets and
classes.) The predicate of being a relation is defined as

Rel(r) <= Vaer Jz,y (a=(x,y)) , (2)

where the derived concept of an ordered pair is used (e.g. (z,y) := {{z},{z,y}}). Notice
that no specification of sets from which the z and y are to be taken is implied. The
predicate of being an equivalence relation is defined as

Equ(r) <= Rel(r) A
Ve,y ((z,y) €r = (y,z) €r) A (3)
Ve,y,z ((z,y) €r A (y,2) €r = (x,2) €7) .
Notice that Equ(r) implies (z,y) € r = (y,z) € r = (x,z) € r. So, an equivalence

relation is reflerive in addition to being symmetric and transitive, which is what the
definition says. A particular equivalence relation is the identity, which is defined as

(r,y) €id <= z=y. (4)
The predicate of being a function is defined as

Fun(f) = Rel(f) A Ya,u,0 (zy) e fA@y)ef =y=y). (5

Let f be a function and (x,y) € f, then one also writes f(z) for y. Any relation r defines
a domain dom(r) and a range ran(r) by

dom(r) := {z[3y ((z,y) € 1)}, ran(r) = {y| Iz ((z,y) €7)} . (6)

A co-domain Y as it appears in the definition of maps f : dom(f) — Y is here not
part of the definition of a function. Here the most important feature of relations will be
the non-commutative, though associative, product operation

ros:={(z,2)| 3y ((z,y) € s A (y,2) €7)}. (7)

The order of and s on the right-hand side is chosen such that for functions one gets the
conventional definition of composition. For any relation r the reverse relation is defined
by

r b= {(y.)l (z,y) €} (8)
for which we obviously have (r~1)~! = r and (ros)™! = s71or~!. Let r,s,7’, s relations
such that » [and s C ', then ros C 7’ o s'. These operations of relation algebra are
the key to an elegant characterization of relation properties:

3this includes the case r = »’

Theorem 1 Let r be a relation. Then
Fun(r) <= ror 'cid, Equ(r) <= r'cCrArorcr.
Proof: Straightforward, [4] (14.2), (17.2), (17.5). [

Theorem 2 For any function f the relation r:= f~' o f is an equivalence relation. It
satisfies: (z,2') €r < f(x) = f(2').

Proof: (z,2) € r < Ely((:c,y) € fA(y,2) Gf_l) < Jy((zy,y) e fA(zy) e f) <
dy(y=f(x) Ny =f(z)) & f(zr) = f(z). From this form of r, the properties of an
equivalence relation follow directly from the corresponding properties of the equality
relation. n

The converse of the Theorem is not true, however. For some relations r, the relation

r~Yor may be an equivalence relation although r is not a function. A simple example is

r:={(1,1),(1,-1),(=1,1),(=1,1)} for which rLor = r and, since (1,1) € rA(1,—1) €
r, r is not a function.

The equivalence relations associated with functions indicate whether their quotient
relation is again a function:

Theorem 3 Let f and g be functions such that dom(f) = dom(g) and let the relation
h be defined by h := go f~'. Then

flof c glog <= Fun(h) A g=hof.

Proof: <= (,9) € f o f & [(x) = [(y) = g(x) = h(f(x)) = h(J(»)) = 9(y) = (,1) €
g 'og. Hence f~lof C g7log. =: hoh™ = gof~lofog™' C gog~logog™' C idoid = id.
Hence, by the first part of Theorem h is a function. Now consider the function
hof:hof=goflofCgoglogcCidog=g,thus hof C g. Since both functions
have the same domain, namely dom(f), they are equal. [|

In a similar way in which a functions determines function values f(x) for any = €
dom(f), a general relation r defines function values r[a] for any set a

rla] :={y| Iz (x € a A (z,y) €7)} . (9)
For a N'dom(r) = () one thus has r[a] = 0. Of course,
Fun(f) Az edom(f) = {f(z)} = f[{=}]. (10)
Lemma 1 Let r be a relation and o an equivalence relation. Then
(z,y) €roo A (z,2') €0 = (2,y)€rop.

Proof: (z,y) € ro o = (x,y') € oA (y,y) € r for some y'. Since g is an equivalence
relation, also (2/,y') € o A (v, y) € r and, therefore, (2/,y) € r o o. [|

Theorem 4 Let g be a function and ¢ an equivalence relation such that dom(g) =
dom(p). Then

0 Cglog + g=goo.

Proof: =: (1,y) € 0 = (x,y) € g~ ' o g & g(x) = g(y). This allows us to compute g o o.

Let 2 € dom(p) be arbitrarily selected. Then the elements " of g[{z}] satisy (z,2’) € o
and, according to our previous result, g(z) = g(2’). Therefore g[o[{z}]] = {g9(z)} and
(9o 0)[{z}] = {g(x)}. Since g[o[{z}]] has a single element, g o p is a function, and
since this single element equals g(x), this function equals g. <: according to Lemma
function ¢ is constant on equivalence classes of o. This is exactly what o C g log

says. |

Corollary 1 Let f and g be functions such that dom(f) = dom(g). Then
flof Ccgilog = g=go(flof).

Proof: Apply Theorem [4] to the case that g is of the form f~! o f. |
The set of all the physical quantities under consideration , is a finite set F' of functions

on X. Thus
feF = Fun(f) A dom(f)=2X (11)

For any subset G C F' we combine the finitely many functions g € G into a single one,
denoted by F(G) in a natural way:

F(G):={(a,b)| Iz, g(z € X Nge G AN a=(x,9) N b=g(z))} (12)

One should note here that defining a function simply as a set of ordered pairs is cleaner
and simpler as the usage of mappings, where one would need Cartesian products to
define the co-domains. As any function, it defines an equivalence relation on its domain,
which we introduce here together with an abbreviating name

R(G) = F(G) ' o F(G) . (13)

Of course,
(x,2') e R(G) +—= Vgel (g(x) = g(:v’)) . (14)

Let us now study how the natural partial order of equivalence relations and of subsets
fits together. First the trivial consequence of the subset relation of the function sets

GcGd = R(G)CRG) (15)

and the less trivial consequence of the subset relation of equivalence relations: Consider
G,G' C F and assume that
R(G) C R(G") (16)

then, by Theorem 3| the relation ¢ := F(G') o F(G)™! is a function and we have

F(G") = 9o F(G), (17)

and by Corollary [1] we have
F(G) = F(G")oR(G) . (18)

This shows that the equivalence relations introduced here capture the concept of func-
tional dependence between the functions collected in F: Consider two disjoint subsets
G,G of F. From we have

R(GUG) € R(G) (19)

and
R(GUG) C R(G) . (20)

Lets see what it means when we have equality in . Then we have due to
R(GUG) =R(G) = R(G) > R(G) (21)

and thus and the consequences and .

This means that the functions f’ € G’ [J] can be expressed by a function term in
functions f € G:

vV € X (f,<$))f/€G/ = @((f(m))fe(}) . (22)

Normally this kind of expressions is derived from criteria concerning non-vanishing
Jacobians. Here, however, we did not even assume differentiability of the functions
ferF.

In physics texts on thermodynamics we may read equations like

S = S(U,V,n) (23)

for physical quantities S, U, V', and n.

In the syntax accepted today in mathematics this is nonsense: A function (which S
has to be in order that S(U,V,n) makes sense) cannot equal a function value (which
S(U,V,n) is). In the syntax of physics and the syntax of mathematical logic this is
perfectly right. Here, S is understood here as a term and U, V', n as variables (which
are terms too). Equation is simply understood as an abbreviation of the statement

free(S) = free(S)U{U,V,n} , (24)
where free(T') is the set of free variables of the term T'. Of course, one could write
with less formal similarity to as {U,V,n} C free(S).

With the function formalism developed above there are some equivalent ways to
formulate what is intended to express. For the function sets F = {S,U,V,n},

G={U,V,n}, G'={S} says

S(x) = p(U(x), V(x),n(x)) (25)

4the apostrophe to f is a diacritical mark and does not denote the derivative

We have prepared three formulations of the premises that lead to this conclusion: From

(16)
R(S) > R(U,V,n), (26)

and from the first equation of

and by
S=SoR(U,V,n). (28)

The last of these formulations shows the highest degree of formal resemblance to .
The meaning is in all three cases: Let 2 and 2’ be elements of X such that U(z) = U(z'),
V(z) = V(2'), and n(z) = n(a’). Then one has S(z) = S(z’). Notice that if X would
be a manifold and (U, V,n) system of coordinates (a global chart) for it, then one would
conclude z = 2/ and S(z) = S(a’) a fortiori. For the function ¢ in one has

o= S0 F(UV,n)". (29)

In this representation the name S appears, which resembles the physics (and engineer-
ing) naming convention according to which the nature as a physical quantity determines
the name, and not the argument structure of a representing function.

Equation says that in any relevant situation, the value of S allows a functional
representation in terms of the values of the quantities U, V', and n. In a treatise written
in normal physical style, where situations are treated implicitly (without being associated
with symbols), this is interpreted simply as ‘S is a function of U, V, and n’ and
allows us to express this function by well-defined operations from the ‘coordinate-free’
state functions S, U, V, n.

References

[1] Loomis, Sternberg: Advanced Calculus, Addison-Wesley 1968
[2] H. B. Callen: Thermodynamics, Wiley, 1963

[3] ”Approach of a System of Particles towards Thermal Equilibrium” from The
Wolfram Demonstrations Project.

http://demonstrations.wolfram.com/ApproachOfASystemOfParticlesTowardsThermalEquilibrium/
Contributed by: Ulrich Mutze and Stephan Leibbrandt (published 2012-03-08)

[4] Jirgen Schmidt: Mengenlehre I, Bibliographisches Institut, BI 56/56a, 1966

http://demonstrations.wolfram.com/ApproachOfASystemOfParticlesTowardsThermalEquilibrium/

