
On Vectors, Points, Rotations, and Rigid
Bodies.

Ulrich Mutze, www.ulrichmutze.de

June 9, 2022

1 Introduction

This article was planned to be a pedagogically extended version of Chapter 2 of [17], a
work which states that it ‘can be considered a translation of the most basic parts of [the
program] PaLa[1] from commented C++ code to ‘normal language’ ’. This indicates
that the perspective on the matter listed in the title is that of computational physics.
Computational physics has many flavors. It can deal with modeling factual physical
or technical systems aiming at predicting their reactions to modifications which would
be more expensive to test with the real system. I worked for some years on a project
of that type [2],[17]. It also can be used as an enhanced form of thought experiment
(Gedankenexperiment) that lets us test the consistency and implications of hypothetical
principles for dynamics, and system evolution [3],[4]. It is more in the spirit of such
questions that the present article is written.

The C++ class library [5] which I developed when working on projects of computa-
tional physics and constructive mathematics codes all the concepts to be developed in
the present article (and much more). In [5] a more systematic approach to geometry
is chosen than here. There are different classes for polar vectors and axial vectors, and
also the Euclidean group, and reference systems are implemented as classes. The whole
geometric framework comes in two versions: two-dimensional and three-dimensional.
Presently the main open action items in the geometry part of [5] are: integration of
reflections into the Euclidean group, introducing the Lie-algebra of the Euclidean group,
and the extension to four dimensions, i.e. implementing relativistic kinematics.

The present article is incomplete since it not yet contains a derivation of the form
of rigid body dynamics from the principles of [3]. However, in approaching this aim
I discovered a way to merge my favorite description of rigid body kinematics is terms
of Euler-Rodrigues parameters with the principles of straightforward (un-constraint)
Hamiltonian mechanics. This gives rigid body dynamics a completely regular position
within Hamiltonian mechanics. This result presently marks the end of the work, which
is planned to be continued.

1

2 Vectors

When dealing with space in classical physics it is natural to employ affine geometry (e.g.
[7]), in which points and vectors are different mathematical entities. This reflects the
fact that operations that make sense for points may make no sense for vectors and vice
versa: Whereas for two vectors it is meaningful to consider their sum, no such notion
exists for points. Further, no single point plays a role different from that of any other
single point, whereas for vectors there is the zero vector which is uniquely singled out
by its arithmetic properties.

Let V be an Euclidean oriented vector space, i.e. a three-dimensional linear space 1

over the field R of real numbers for which a scalar product · : V ×V → R and a vector
product × : V ×V → V are defined and have the properties implied by the names. To
be completely explicit we list those: For all u,v,w ∈ V, a, b ∈ R we have the algebraic
properties 2

u · (av + bw) = a (u · v) + b (u ·w) , v ·w = w · v , v · v ≥ 0 , (1)

u× (av + bw) = a (u× v) + b (u×w) , v ×w = −w × v , (2)

and the following property which excludes trivial realizations of (1):

v · v > 0 ⇔ v 6= 0 . (3)

Further, trivial realizations of (2) are excluded by requiring that for each u,v ∈ V we
have for w := u× v the following equations

u ·w = v ·w = 0 ,

w ·w = (u · u) (v · v) − (u · v)2 .
(4)

If the scalar product is given, there are just two vector products which satisfy (4): Let
× be one of them, then the other is ×′ : (u,v) 7→ v×u. Each of these vector products
provides V with a notion of orientation and the orientations associated with the two
different vector products are different.

If we would like to treat 3-dimensional Euclidean vector spaces in general, without
singling out an orientation we had to introduce the vector product as an operation
V × V → A where A would be a vector space of axial vectors. Orientation then would
come in as a decision how to interrelate the vector spacesA and V. It is a unique property
of 3-dimensional space that axial vectors (which always are the second order elements of
the Grassmann algebra over V) form a vector space of the same dimension as the normal
(=polar) vectors (the first order elements of the Grassmann algebra). This is so since
for an n-dimensional vector space, the space of axial vectors has dimension n(n − 1)/2
which equals n only for n = 3. There are different approaches to the nature of axial and
polar vectors based on the representation theory of the group O(3) and others based on

1Here the adjective ’Euclidean’ is understood as implying three-dimensionality. This is only termino-
logical convenience.

2For a−1 u one sometimes writes u/a or u
a

.

2

specific geometric figures (such as arrows and screws). All are connected and trying to
clarify these connections was among the motivations to write this article. The task is far
from completed so far. As is clear from what was said so far is that the mathematical
structure selected here as a starting point to these questions is the operation of the
vector product as an operation V × V → V.

Since the vector product is an operation V × V → V, it makes V an algebra, actually
one which satisfies the Jacobi identity

u× (v ×w) + v × (w × u) + w × (u× v) = 0 (5)

and thus is a Lie algebra. As it will turn out, it is the Lie algebra of the rotation group.
For v ∈ V one defines |v| :=

√
v · v, which is said to be the length of the vector or its

absolute value. It allows expressing equality in V as follows

u = v ⇐⇒ |u− v| = 0 . (6)

For all u,v ∈ V, a ∈ R we have

|au| = |a| |u| , |u + v| ≤ |u|+ |v| . (7)

From the second equation of (4) we have

|u · v| =
√
|u|2|v|2 − |u× v|2 ≤ |u||v| (8)

the inequality part of which is known as the Cauchy-Schwarz inequality. By definition,
|v| = 1 characterizes a unit vector and v · w = 0 characterizes orthogonal vectors.
For each v ∈ V for which |v| 6= 0 the vector v̂ := v/|v| is a unit vector. Setting
d(v,w) := |v −w| defines a metric, and thus a metrical topology on V.

A triplet (e1, e2, e3) of mutually orthogonal unit vectors is said to form an orthonormal
basis 3 or an Euclidean system of reference. It is said to be positively oriented if e3 =
e1×e2. If this holds, we also have e1 = e2×e3 and e2 = e3×e1. For positively oriented
Euclidean systems of reference we also use the short name frame. The name ‘positively
oriented’ is a bit misleading: actually the list (e1, e2, e3) has ‘the same orientation as
the whole space’. If we would change the orientation of the whole space by adopting
the vector product ×′ mentioned above, an Euclidean system of reference which was
‘positively oriented’ before would cease to be positively oriented.

The notion of an orthonormal basis obviously applies also to linear subspaces of V.
Such bases then consist of either a single unit vector or two orthogonal unit vectors. Due
to its bi-linearity, a scalar product is a convenient tool to generate linear subspaces: For
any subset A ⊂ V the set

A⊥ := {v ∈ V : v · a = 0 for all a ∈ A} (9)

3This (commonly used) contraction of ‘orthogonal’ and ’normal’ has the same funny nature as the
abbreviation of ‘omnibus’ (for all) to ‘bus’ (not a word, only a syntactical entity). In our case the
angle (γωνία), to which ‘ortho’ refers, gets lost and what is left would be ridiculous in German:
‘richtig normal(er Wahnsinn, nämlich)’.

3

is a linear space. And
span(A) := (A⊥)⊥ (10)

is the smallest linear subspace of V which contains the set A.
How can we construct an orthonormal basis? Assume we know a way to create (specify,

select) a vector whenever we want. We make use of this by creating v1 and v2. Let us
assume that |v1 ·v2| 6= |v1||v2| 6= 0 (otherwise we would try a new selection). Then it is
clear that the two vectors

u1 := v̂1 , u2 := v2 − (u1 · v2)u1

are orthogonal, non-zero, and that the vectors

e1 := u1 , e2 := û2 , e3 := e1 × e2

form an orthonormal basis.
Finally we consider the automorphisms of the oriented Euclidean vector space V, i. e.

the mappings ϕ : V → V which satisfy for all v,w ∈ V and all a, b ∈ R

ϕ(av + bw) = aϕ(v) + b ϕ(w) linearity ,

v ·w = ϕ(v) · ϕ(w) orthogonality ,

ϕ(v ×w) = ϕ(v)× ϕ(w) conservation of orientation ,

(11)

and thus preserve (leave invariant, are consistent with) the algebraic structures (actually
three mappings R×V×R×V → V,V×V → R,V×V → V) appearing in equations (11).
The property of bijectivity which is essential for giving the set of automorphisms a group
structure (with the composition of mappings as product) has not to be stipulated here
since it holds as a consequence of linearity and orthogonality. Mappings V → V which
are only known to be linear, need not to be bijective. They are said to be endomorphisms
of the linear space V. Let the set of these endomorphisms be designated L (for linear).
Let us anticipate the name O(3) for the group of those ϕ ∈ L which are orthogonal
(i.e. satisfy the second equation of (11)), and the name SO(3) for the group of those
ϕ ∈ O(3) which conserve orientation (i.e satisfy the third equation of (11)).

The automorphism of V will be studied in Sections 4 and 5. They will turn out to
be rotations. The last equation of (11) plays a particular role: if we assume only the
first two equations to hold, then the last one is automatically satisfied at least ‘up to
the order of the factors’ (and, therefore, ‘up to a sign’) i. e.

ϕ(v ×w) = ϕ(v)× ϕ(w) or ϕ(v ×w) = ϕ(w)× ϕ(v) for all v,w ∈ V . (12)

For any frame F = (e1, e2, e3) and any ϕ ∈ SO(3) the list ϕ(F) = (ϕ(e1), ϕ(e2), ϕ(e3))
is again a frame. Consider now any two frames F and F ′. We will construct ϕ ∈ SO(3)
such that ϕ(F) = F ′. The basic tool for this is provided by mappings back and forth
to R3 which are associated with a frame: For each frame F = (e1, e2, e3) we define the
bijective mapping

φF : R3 → V , (u1, u2, u3) 7→ u1 e1 + u2 e2 + u3 e3 , (13)

4

which constructs vectors from numerical triplets. In particular it maps the canonical
basis ((1, 0, 0), (0, 1, 0), (0, 0, 1)) of R3 into F . The inversion of this mapping is given by

φ−1F : V → R3 , u 7→ (e1 · u, e2 · u, e3 · u) . (14)

Of course, it maps F into the canonical basis. This allows us to express the desired
mapping as ϕ = φF ′ ◦φ−1F since this maps first F into the canonical basis of R3 and then
this canonical basis into F ′. This suggests to define a division of frames by

F ′/F := φF ′ ◦ φ−1F . (15)

When writing the condition for ϕ as ϕF = F ′ we are now able to write the solution in
a natural fashion as ϕ = F ′/F . All these relations are special cases of what one finds in
torsors (see Wikipedia and [26]). Indeed, the set FV of frames in V with the action

SO(3)×FV −→ FV , (ϕ, F) 7→ ϕF (16)

is a SO(3)-torsor (which means what we just showed: that for any pair (F, F ′) ∈ FV×FV
there is exactly one ϕ ∈ SO(3) for which ϕF = F ′). Another way of expressing this is
to say that the action (16) of the group SO(3) on the space FV is transitive (each F can
be transformed into any F ′ by some group element) and effective (the group element
mentioned above is uniquely determined). If one selects in FV an arbitrary element F̃
the mapping

FV −→ SO(3) , F 7→ F/F̃ (17)

is bijective; it is, however, not canonical since it depends on the selection of F̃ .
So far things were presented without any relation to ‘the real world’ not even to

geometry. Let us sustain this attitude for a short while and even strengthen it in the
discussion of how to construct an Euclidean oriented vector space. Such a construction
can be based on the concept of a list (here of three real numbers) or of a function (here
defined on any three element set such as {1, 2, 3} with values in R). In Mathematics
we interpret lists as elements of Cartesian product spaces. These are thus functions
by definition. In programming, lists (arrays and associative arrays, the latter being
also known as ‘dictionaries’ or ‘hashes’) and functions are different concepts. They
differ mainly by the methods that allow defining particular instances of these kinds of
objects. Specifying a list means specifying all of its components (there are only finitely
many of those). Specifying a function means specifying an algorithm: how to compute
the function value for any given argument. One may hold different opinions whether
this is a real difference. From a practical point of view it is a major difference since
the definition of algorithms can build on pre-defined algorithms such as the algorithms
for defining arithmetic operations, the usual elementary transcendental functions, and
random numbers. For the definition of lists it would make sense only in rare cases to build
on pre-defined lists. Each programming language provides means to store and otherwise
handle algorithms internally much more efficiently than by holding all argument-value
pairs in memory. There is no doubt that the latter strategy could provide sufficient
functionality for simple applications since it worked for generations of scientists and

5

engineers in the form of printed function tables, particularly of logarithms. Nevertheless,
such a ‘memory based function definition’ would be a ridiculous project today. For our
present aim of modeling Euclidean spaces we thus use arrays, generically written as
(x1, x2, x3), (y1, y2, y3) and give the following algorithmic definition of all the operations
introduced so far (where a is a generic element of R):

a (x1, x2, x3) := (a x1, a x2, a x3)

(x1, x2, x3) + (y1, y2, y3) := (x1 + y1, x2 + y2, x3 + y3)

(x1, x2, x3) · (y1, y2, y3) := x1 y1 + x2 y2 + x3 y3

(x1, x2, x3)× (y1, y2, y3) := (x2 y3 − x3 y2, x3 y1 − x1 y3, x1 y2 − x2 y1)

(18)

making use of the algorithms for addition, subtraction, and multiplication in R. As is
obvious, the first three operations are not influenced by the indexing of the components
in the sense that for each permutation σ of the set {1, 2, 3} the map Pσ : (x1, x2, x3) 7→
(xσ(1), xσ(2), xσ(3)) is an automorphism for the algebraic structure defined by the first
three operations. It is an automorphism for the whole structure (i.e. for the Euclidean
oriented vector space) if σ is an even permutation, i.e. the identity, or 1 7→ 2, 2 7→ 3, 3 7→
1, or 1 7→ 3, 2 7→ 1, 3 7→ 2. Of course, this purely numerical model allows us to code the
concept of an oriented Euclidean spaces as a type in any object oriented programming
language. In most such languages the convenient syntactic category is named class and
the close relation between classes in this sense and classes in the sense of set theory is
an interesting topic.

Taking into account the role that this structure plays in modeling physical space —

the background of all physical, chemical, and biological processes — it is tempting to

think of this structure as an invention of Nature (to be compared with the inventions of

Nature which led to molecular evolution and finally to life [8]). One may imagine a way

of physical existence of things in which the modality of happening at spatially separated

places 4 was not yet available (since the logical connections enabling ‘spaciality’ were not yet

made, comparable in the biochemical analogue to a state where atoms did not yet find the

opportunity to combine to any amino-acid molecule). With ‘spatiality’ becoming possible,

a considerable part of energy would flow into this new modality of existence and space

would form at an increasing rate — leading to the Big Bang. Of course this is not more

than speculation as long as no predictive models of such a space formation process have

been constructed. With respect to our understanding of ‘the inner workings of Nature’ we

probably are in a similar situation as Schrödinger was with respect to the ‘inner working of

life’ when he was writing (in 1943) What is Life ?. He reflected about the possible physical

nature of genetic information, clearly seeing that the striking constancy of physiological

organization over generations poses the hardest problem for physical understanding. He

saw this nature as that of an ‘aperiodic crystal’ which is surprisingly to the point, although

not as specific as we know it today. With respect to Nature in general (and in much smaller

dimensions than those of the bio-molecules) one may see the hardest problem in the kind of

4As a model for the logical implications of spatial separation one may compare parallel computing and
normal serial computing.

6

physical organization which enables a behavior that is so closely related to the behavior of

real numbers and arrays of those. Knowing that numbers can be coded as finite sequences

of binary quantities we may wonder where and under what circumstances binary quantities

come together and form chains that then act on their environment in a way that that a

numerical value can be associated with that interaction.

The role of space V (and also of the point space P to be considered in the next section) in
physics is strongly influenced by its relation to time. Since Einstein, we know that Nature
determines the concept of equality only for spatiotemporal points 5 , also known as events
or world points. As will be discussed soon, equality is well defined in all structures which
can be represented as sets 6 . This indicates that it is a sound concept to define Minkowski
space as a set — the ‘set of all world points’. Starting from this set, one then may define V
as a subset (a space-like hyperplane with suitable structure) or as a set of suitably defined
equivalence classes. Space-like hyperplanes (see [11] for their relativistic transformation
properties) can be used to define systems of reference as R4-valued functions on the
Minkowski space. Given a system of reference, we may meaningfully say that two events
happened at the same place in space if their spatial coordinates were found to agree,
even if their time coordinates were registered as different.

It is possible to translate such a mathematical construction into operational direc-
tions since world points are straightforward idealizations of real world entities. Space
points are more indirect idealizations since they assume for operational definition the
existence of a stable environment (such as a metrology laboratory with optical tables
and coordinate measuring machines in action).

Set theory and programming

For any two mathematical objects x and y which are defined in the framework of set
theory the meaning of the statement x = y is clear: it says ∀z(z ∈ x ⇔ z ∈ y). In this
context it looks quite natural to resort to the elements of mathematical objects x and y.
There is another context in which it seems not to be common to consider these elements
although it would be enlightening: If we introduce a function in the style ‘let f : X → Y
be continuous’ then, the mental association for the traditionally educated mathematician
when seeing f(x) is that there is a y ∈ Y which is ‘well-defined’ by saying y = f(x).
Respecting the set theoretical framework suggests a more detailed association: Inspecting
the elements of x (and recursively the elements of those elements) 7 we are confronted with
a wealth of concrete information which, so our idea, should be considered as input for an
algorithm which determines the elements of y, and thus y itself. If we hold a sufficiently
wide idea of an algorithm (one which allows all operations which the axioms of set theory
allow, such as forming the union of the elements of any set) this defines not a new concept

5As Einstein says, ‘Die Naturgesetze sind Aussagen über zeiträumliche Koinzidenzen’ (The laws of
nature are propositions concerning spatiotemporal coincidences) Prinzipielles zur allgemeinen Rela-
tivitätstheorie, Annalen der Physik Vierte Folge Band 55, 1918

6In object oriented programming it is very common to define classes without defining equality for them.
7If nothing special is known about the definition of a set X, there is no such procedure as ‘inspecting the

elements of X’, the only fact we are given is that for any arbitrary set it is decided (in the Platonic
world, not necessarily decidable by any mathematician) whether it is an element of X or not. In all
sets that are reasonably considered in mathematical physics there is more information available, and
access to the elements, at least to the elements of a representative (probably finite) subset is possible.

7

of a function, but only an explication of the set theoretical function concept. It also brings
the mathematical view and a programmer’s view very closely together. In programming,
the information that can be obtained from being given some ‘instance x of class X’ can
always be traced down, probably over a cascade of user-defined classes, to numbers and
character strings, and — finally — to arrays of bits. The definition of class X specifies
the structure of this information explicitly and completely. However, not all details of
this structure normally are visible to a programmer who uses this class in his programs.
Although absolutely necessary for letting the class function according to specification, these
details may contain arbitrary or preliminary elements so that the creator of the class may
wish to change some internals without affecting the programs which meanwhile were written
by others and which build on the functionality of X. One speaks of data hiding in this
case; one then could view a typical set theoretic presentation of a mathematical task as
hiding data perfectly: we treat numbers without mentioning their elements, even ordered
pairs (x, y) without mentioning the elements {x} and {x, y} which make up the set (x, y)
according to the view of Wiener and Kuratowski. The reason for this form of data hiding
is very similar to that in programming. There are various set theoretical representations
of numbers and ordered pairs and as ‘users’ of these mathematical concepts we only need
their ‘behavior’ which manifests itself — just as in programming — in the availability
(‘definedness’) of pertinent functions (the canonical projections for ordered pairs and the
arithmetic operations for numbers). The set-based formalism in mathematics can be viewed
as a powerful programming language with a very simple and uniform syntax. A concept or
construction that is hard to formulate in this language, will be even harder to formulate in
C++ . This analogy of mathematical formulation and C++ formulation allows translating
sets and functions defined in this article into classes and methods (member functions) of
C++ directly.

Let us return to the meaning of f(x). If functions act as input to an algorithm, e.g.
an algorithm which defines for given functions f and g the sum function f + g, we don’t
need a description of the algorithm for computing f(x) and g(x); the result is sufficient:
(f + g)(x) := f(x) + g(x). If we have to define a function of a real argument, e.g. the
real square root, the algorithm, e.g. f(x) := {x1 = x, y = x1 + 1,while(y 6= x1) {x1 =
y, y = (x1 + x/x1)/2}, y} needs the functions addition, subtraction, and division of real
numbers. However, these functions enter as generators of function values irrespective of
the underlying algorithm. On the other hand, it is clear that the internals of number
representation and implementation of the arithmetic functions is indispensable for the
algorithm to work.

Interestingly the concept of a reference system, which — as we have just seen — is
required when we are to speak about Euclidean space in normal mathematical language,
has a representation also in our numerical model, namely as a list of three orthonormal
vectors from which the coordinates of individual vectors can be obtained by forming
scalar products. One could interpret the numerical lists which characterize a vector in
our numerical model from the very beginning as values of coordinates with respect to
some coordinate system. One then would read (18) as a definition of the vector space
operations ‘in terms of coordinates’. From a physical point of view it is rather evident,
however, that coordinates can’t play a role in the process of forming the sum of two
vectors (e.g. of electrical fields from two distinct sources) since maintaining a coordinate
system is itself a physical process (involving a net of synchronized clocks) which may
not yet be completed at the space-time point where the vector sum first is needed.
Rather, this numerical triplet is a ‘state variable’ which allows the arithmetic operations
be defined autonomously without interacting in any sense with a system of reference.
Actually, instead of a triplet of real numbers, a triplet of three integer numbers together

8

with a single common real factor fixing the order of magnitude would be a more natural
data structure for the internal state.

In summary, we see that the concept of an oriented Euclidean space links several con-
cepts for which it is not completely clear which ones one should consider as primary and
which as derived. That everything fits together and forms a logical entity independent
of the question of appropriate order of introduction is a noteworthy fact.

As mentioned above, one may turn the present conceptual discussion into a concrete
definition of classes in an object oriented programming language. I am fascinated by
the guidance which the strict rules of C++ provide in situations where classes have to
be defined which depend on each other (e.g. one of the classes defines functions which
take arguments from the other class). Even in situations where there is a choice, one
finds often that clear rules of syntactic simplicity and straightforwardness single out one
of the possible ways. In any way, the C++ compiler guarantees that any class edifice
which compiles avoids all ‘vicious circles’ (impredicative definitions).

2.1 Orientation of lists of vectors

So far, we know orientation only as a property of orthonormal bases (and, in a sense, for
the whole of V). To extend the concept to less special entities one defines the determinant
function

det : V × V × V → R , (u,v,w) 7→ (u× v) ·w (19)

which is a linear function in each of its arguments, takes the value 0 if the arguments
are linearly dependent (i.e. a non-trivial linear combination of them exists which has
the value 0), but does not vanish identically. An interesting result in linear algebra says
that two functions which enjoy these properties are proportional of each other and are
alternating functions in the sense of satisfying:

det(u,v,w) = det(v,w,u) = det(w,u,v) =

−det(u,w,v) = −det(w,v,u) = −det(v,u,w) .
(20)

In addition, such a general determinant function on any linear space of finite dimension
vanishes if and only if the arguments are linearly dependent (see [9], pp. 43-46). Apart
from determining orientation, this function also determines the volume of the parallel-
epiped defined by the argument vectors.

If we start from a three-dimensional real linear space which has no direct relation to
geometry (e.g. the space of solutions f : R → R of the ordinary linear differential
equation f ′′′ = 0, or the set of functions {1, 2, 3} → R) one may ask which degrees
of freedom exist to turn this space into an oriented Euclidean space according to the
previous definition. The answer is quite simple: Select any triplet of linearly independent
elements of this linear space. Then there exist a uniquely determined scalar product and
a uniquely determined vector product which turns this triplet into a positively oriented
Euclidean system of reference. This makes clear that ’being positively oriented’ is not
an intrinsic property but a conventional one. Orientation (also referred to as screw sense

9

or chirality) is not only associated with mutually orthogonal triplets of vectors but with
arbitrary triplets according to the function

ori : V × V × V → {−1, 0, 1} , (u,v,w) 7→ sign(det(u,v,w)) (21)

Notice ori(b1,b2,b3) = −ori(b3,b2,b1) which makes clear that it is not a set of vectors
which determines the orientation but a list of those. A triplet (b1,b2,b3) of vectors
is linear independent (and thus a basis of V) iff (i.e. if and only if) it is oriented (i.e.
ori(b1,b2,b3) 6= 0). Let this be the case. Then, for any u ∈ V there exist αi ∈ R
for which u = α1 b1 + α2 b2 + α3 b3 holds. Scalar product and vector product provide
convenient means to compute these development coefficients: We define a new basis
(c1, c2, c3), said to be the basis dual (or reciprocal) to (b1,b2,b3), by

c1 :=
b2 × b3

det(b1,b2,b3)
, c2 :=

b3 × b1

det(b1,b2,b3)
, c3 :=

b1 × b2

det(b1,b2,b3)
(22)

and find
α1 = c1 · u , α2 = c2 · u , α3 = c3 · u (23)

and
bi · cj = δij , det(b1,b2,b3) det(c1, c2, c3) = 1 . (24)

From this it is clear that a positively oriented Euclidean system of reference is a self-dual
basis and vice versa. For preparing the definition of angles between vectors we observe
that for v,w ∈ V the quantities x := v ·w , y := |v×w|, r := |v| |w|, as a consequence
of (4) satisfy x2 + y2 = r2 and y ≥ 0 to the effect that there is a uniquely defined angle
ϕ ∈ [0, π] for which x = r cos(ϕ), y = r sin(ϕ) holds, and which is said to be the polar
angle determined by (x, y) and is sometimes written as arg(x, y). Many programming
languages (e.g. C, Java, Ruby) represent the polar angle ϕ as atan2(y, x) in reminiscence
of the incomplete representation ϕ = arctan(y/x) which in too many formularies is
recommended even for y < 0 where it holds only up to adding or subtracting π. Notice
that the mathematically correct representation ϕ = arccos(y) is practically useless for
small values of ϕ. A useful unrestricted (as far as (x, y) 6= (0, 0)) representation is
ϕ = 2 arctan(y

x+
√
x2+y2

). In pure mathematics polar angles enter the stage with the

complex plane, where Euler’s famous formula

ei ϕ = cos(ϕ) + i sin(ϕ)

implies the representation ϕ = arg(x, y) = Im log(x + iy). The following function sum-
marizes the definition of the angle between vectors:

∠ : V × V → [0, π] , (v,w) 7→ arg(v ·w, |v ×w|) . (25)

Obviously ∠(v,w) = ∠(w,v) and |v + w|2 = |v|2 + |w|2 + 2 |v| |w| cos(∠(v,w)). It
is interesting to note that angles between vectors in oriented two-dimensional space
behave quite differently. Here it makes sense to ask for the rotation needed to move one
vector into the other when rotating in the sense of the given orientation. Then angles

10

in the range [0, 2π) are possible. To make this explicit, I use the natural transcription
of the concept of a vector product to Euclidean two-dimensional space (denoted V2) by
replacing the binary operation × : V×V → V by a unary one: × : V2 → V2 (as done in
the well-known program system Mathematica by Stephen Wolfram). This operation is a
linear orthogonal mapping (with linearity and orthogonality defined in analogy to (11))
which assigns to any vector v a vector v′ which is orthogonal to v and has the same
length. Since the mapping itself is assumed to be orthogonal the choice of selecting such
a vector or its negative is determined for each vector if it has been defined for a single
non-zero vector. Then ∠(v,w) := ϕ where ϕ is uniquely determined by

ϕ ∈ [0, 2π) and w = cos(ϕ)v + sin(ϕ) (×v) . (26)

3 Points

An oriented Euclidean point space is a triplet (P,V,+) where V is an oriented Euclidean
vector space, and the mapping + : P × V → P satisfies:

1. For all v,w ∈ V, p ∈ P we have (p+ v) + w = p+ (v + w).

2. For any two points p, q ∈ P there is a uniquely defined element of V, conveniently
written as q−p, for which p+(q−p) = q. For p+ 1

2(q−p) one also writes 1
2(p+q).

One often finds −→p q written for q − p. This notation lacks the algorithmic cleverness of
the difference notation.

The notions of differences and mean-values of points can easily be extended: Let (pi)
n
i=1

be a family of points and (wi)
n
i=1 a family of real numbers. For arbitrarily selected origin

o ∈ P we consider the P-valued expression

o+ w1 (p1 − o) + . . .+ wn (pn − o)

which is (as is easily seen) independent of o iff the sum of the wi is 1; it then represents
a well-defined point. Further, the expression

w1 (p1 − o) + . . .+ wn (pn − o)

is independent of o iff the sum of the wi is 0; it the represents a well-defined vector. In
both cases one writes the well-defined object (be it a point or a vector) as

w1 p1 + . . .+ wn pn . (27)

This is a symbolic notation in so far as the subterms wi pi are not defined objects, only
the expression as a whole is defined. (Also in the notation q − p the subterm −p is not
defined.)

Let an oriented Euclidean vector space V is given. Then all completions to an oriented
Euclidean point space (P,V,+) can easily be described: Let X be any set for which there
is a bijection φ : X → V. Then define P := X and p + v := φ−1(φ(p) + v) for all

11

p ∈ X and v ∈ V. Notice that on the left-hand side of this definition there appears
+ : P × V → P, whereas on the right-hand side we only need + : V × V → V which
is defined as a part of the definition of V.

An (affine) point space in relation to its vector space is a special case of structures of
wide-spread use in mathematical physics. First, it is a special case of a transformation
group: The abelian group V+ underlying V acts transitively and effectively (see the text
following (16)) on P thus making P a V+-torsor. Second, it is a differential manifold
with the special structure that the tangent space at any point is the same vector space
V. If we insist in having disjoint tangent spaces for different points we can achieve
this but get a natural bijection between any pair of local tangent spaces, which then is
the simplest and most comfortable case of an affine connection on our manifold. This
derives from a Riemannian metric which makes P a metric space. This metric has here
a particularly simple form: The distance d(p, q) between points p and q is given by the
length of the connecting vector p− q

d(p, q) = |p− q| . (28)

The property of P as a metric space turns out to be of great organizing power. Any
mapping ϕ : P → P which preserves the metric (i.e. is an isometry):

|ϕ(p)− ϕ(q)| = |q − p| for all p, q ∈ P (29)

is bijective and affine (see [7], Chapter XII, Corollary on p. 445 and Theorem 15). Being
affine means for a mapping to be linear in the same hidden way as P is linear. This will
be explained in detail in subsection 3.2.

An isometry P → P is also called rigid motion 8. If it preserves orientation, it is said
to be a proper rigid motion. Both types of mappings form a group. As will be explained
in subsection 3.2 they are ‘inhomogeneous versions’ of the groups O(3) and SO(3) and
thus will be designated IO(3) and ISO(3). Due to their close connection to Euclidean
geometry and the structure of Euclidean spaces they often are referred to as the (full)
Euclidean group and the (proper) Euclidean group.

3.1 Orientation of lists of points

A list of three points (p1, p2, p3) defines a closed directed polygon p1 → p2 → p3 → p1 and
it is tempting to associate the orientation ori(p2−p1, p3−p2, p1−p3) with this situation.
However, the vectors under consideration are linearly dependent (their sum is 0) and
the orientation (as defined by (21)) is 0. This may surprise since following this directed
path, fixes the same kind of directedness which characterizes the motion of a rotating
body. However, if we are to judge whether the ’sense’ of this motion matches that of
the clock hand, we come to different conclusions depending on the viewing direction.
Applying this observation to the clock itself, we see that it is an important feature of a

8This is ‘motion in a geometrical sense’ where time plays no role. Later we will have to deal with
motion in the sense of physics too.

12

traditional clock that it allows us to see the hands only when looking to the front side
of it, otherwise there would be nothing like a clockwise sense of rotation.

To define non-zero orientations we need one point more: Thus for any list (p0, p1, p2, p3)
of four points we define

ori(p0, p1, p2, p3) := ori(p1 − p0, p2 − p0, p3 − p0) (30)

where on the right-hand side we refer to the orientation of list of vectors as defined in
(21). The intuition behind this is not simply the motion of a rotating body represented
by the closed polygon p1 → p2 → p3 → p1 but also the vector (p1−p0)+(p2−p0)+(p3−p0)
as a kind of directed rotation axis. An example would be a wheel rotatable around an
axis the ends of which carrying engravings ’begin’ and ’end’ respectively. If we spin
the wheel relative to the axis it defines a certain value of orientation. If we fix the
axis, stop the wheel, and make it spin again but in the opposite direction, then we also
have changed the sign of the orientation (which is a number ∈ {−1, 0, 1} according to
the present definition). So the wheel could be used as a materialized definition of a
particular orientation only if it would be prevented to rotate in the opposite direction
(e.g. by a ratchet and pawl mechanism). A more elegant ’orientation normal’ is a screw
and a nut. If we rotate the screw within the nut (or the other way round) it performs
a linear motion in addition to the rotation. In this case the sense of rotation and the
direction of translation are in fixed relation: if we change the sense of rotation, the sense
of translation changes too. So the system defines a constant value of orientation in all
its operating modes. The normal screws in engineering are the so called right screws
(in the few occasions that left screws are needed too, these have to be particularly
marked in engineering drawings). Their orientation as defined above is just what is
positive orientation +1 if the vector product is defined according to this convention.
Right screws and left screws are in a natural relation to right hands and left hands in
primates: The (non-thumb) fingers in a fist define a sense of rotation (following fingers
in the direction towards the finger tips) and the protruding thumb (in the direction
towards its tip) defines a direction.

Assume that ori(p0, p1, p2, p3) 6= 0 then the mapping

β : {r ∈ R4 : r0 + r1 + r2 + r3 = 1} → P
(r0, r1, r2, r3) 7→ r0 p0 + r1 p1 + r2 p2 + r3 p3

(31)

is bijective and defines what is called barycentric coordinates. See (27) for the symbolic
linear combination of points.

A mapping ϕ : P → P preserves orientation iff for any list (p0, p1, p2, p3) of points
we have

ori(ϕ(p0), ϕ(p1), ϕ(p2), ϕ(p3)) = ori(p0, p1, p2, p3) . (32)

3.2 Affine mappings in point space

A mapping ϕ : P → P is called affine iff there is a linear mapping A : V → V such
that

ϕ(p) = ϕ(q) +A(p− q) for all p, q ∈ P . (33)

13

In the situation considered above, that ϕ was an isometry (rigid motion), A obviously is
orthogonal. If it also preserves orientation (proper rigid motion), A is an automorphism
of the oriented Euclidean space V, and thus a rotation (see below (11)). The linear
mapping A ∈ L is uniquely determined by the affine mapping ϕ and is designated ϕ]

and said to be the trace of ϕ ([7], p. 427; this notion is not directly related to the
notion of the trace of a linear mapping as defined in (48)). It has a deeper sense in the
framework of categories. There one also states [7] P] = V and that # is a functor which
connects the category of affine spaces with the category of linear spaces. Upon selection
of an arbitrary origin o ∈ P the affine mapping ϕ determines also a vector a ∈ V such
that

ϕ(p) = o+ a +A(p− o) =: (o,a, A) p for all p ∈ P . (34)

Obviously, a = ϕ(o)− o. Since the origin o is arbitrary the terms

(o,a, A) o ∈ P, a ∈ V, A ∈ L

defined in (34) do not provide a unique parametrization of affine maps. Actually we
have

(o,a, A) = (o′,a′, A′) iff
(
A = A′ and A(o′ − o) = o′ − o+ a′ − a

)
, (35)

and thus the behavior with respect to a shift of the origin is as follows

(o+ s,a, A) = (o,a +A(s)− s, A) for all a, s ∈ V, A ∈ L . (36)

If A is bijective, so is (o,a, A), and we have

(o,a, A)−1 = (o,A−1(−a), A−1) . (37)

The composition of two affine maps is again an affine map which can be represented
reasonably simply in the notation of (34) if everything refers to the same origin:

(o,a, A) ◦ (o,a′, A′) = (o,a +A(a′), A ◦A′) . (38)

The identity mapping P → P has the representation (o,0,1), where 1 is the identity
mapping V → V.

For any subset S of L one defines for arbitrary o ∈ P

S[:= {(o,a, A) : a ∈ V, A ∈ S} (39)

getting a set of affine maps P → P which is independent of the choice of the origin
o. Here the symbol [in its relation to symbol] is borrowed from music where these
symbols stand respectively for dividing and multiplying the frequency of a tone by 2

1
12 .

If S is a group (with respect to composition of mappings), so is S[. The mappings
(o,a,1), a ∈ V are called translations and are independent of o ∈ P. Translations are
said to be inhomogeneous since they don’t map ‘zero to zero’ (actually origin to origin).
Therefore S[as resulting from S by allowing for translations is sometimes said to be the

14

inhomogeneous form of S and is designated IS. This is the origin of the names ISO(3)
and IO(3) for the Euclidean groups.

The homogeneous mappings (o,0, A), A ∈ S do depend on the choice of the origin
o ∈ P: o is a fixed point of the mapping. Although we always have

(o,a, A) = (o,a,1) ◦ (o,0, A) (40)

and the translation is independent of o, the second factor depends on o just as does
the left-hand side. Put differently: Each affine mapping other than the identity can
be written as a product of a translation and a homogeneous mapping in many ways.
Given the affine mapping ϕ we obtain A = ϕ]. But only upon selection of o we get a
representation ϕ = (o,a, A). As given explicitly in (36) the translation vector a depends
on o. So the mapping (o,a,1) depends also on o despite the above stated fact that it
does not depend on o for a given.

By definition, an Euclidean system of reference in P is a list (p0, p1, p2, p3) of points
such that the three vectors ei := pi−p0 form an Euclidean system of reference in V. The
term ori(e1, e2, e3) (which equals ori(p0, p1, p2, p3)) defines the orientation of the system.
For the most frequently used case that the orientation is positive we use the short name
frame for such an Euclidean system of reference. These frames form the set FP . Instead
of writing F = (p0, p1, p2, p3) for some F ∈ FP one may put the orthonormal vectors
into evidence writing

F = (p0, e1, e2, e3), (e1, e2, e3) ∈ FV . (41)

For analyzing the frames in P we proceed in close analogy to the treatment of frames
in V. For any frame F = (p0, p1, p2, p3) and any ϕ ∈ ISO(3) the list

ϕ(F) = (ϕ(p0), ϕ(p1), ϕ(p2), ϕ(p3))

is again a frame. Consider now any two frames F and F ′. We will construct ϕ ∈ ISO(3)
such that ϕ(F) = F ′. The basic tool for this is provided by mappings back and forth to
R3 which are associated with a frame: For each frame F = (p0, p1, p2, p3) we define the
bijective mapping

φF : R3 → P , (u1, u2, u3) 7→ p0 + u1 (p1− p0) + u2 (p2− p0) + u3 (p3− p0) , (42)

which constructs points from of numerical triplets. In particular it maps the ‘canonical
frame’

((0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1))

of R3 into F . The inversion of this mapping is given by

φ−1F : P → R3 , q 7→ ((p1−p0) ·(q−p0), (p2−p0) ·(q−p0), (p3−p0) ·(q−p0)) . (43)

Of course, it maps F into the ‘canonical frame’ of R3. This allows us to express the
desired mapping as ϕ = φF ′ ◦ φ−1F since this maps first F into the canonical basis of R3

and this canonical basis into F ′. Again, we define a division of frames by

F ′/F := φF ′ ◦ φ−1F (44)

15

and we write the condition for ϕ as ϕF = F ′ and are now able to write the solution as
ϕ = F ′/F which is natural. Now the set of frames is an ISO(3)-torsor. If one selects in
FP an arbitrary element F̃ the mapping

FV −→ ISO(3) , F 7→ F/F̃ (45)

is bijective; it is, however, not canonical since it depends on the selection of F̃ .

4 Linear maps

Linear maps V → V (endomorphisms of the linear space V) arise in physics mainly in
two contexts which are not directly related:

1. Under the name of tensors of rank two they describe properties of individual
physical systems. An example of this, to which we will come later in detail, is
the tensor of inertia which connects angular velocity and angular momentum of a
rigid body.

2. Under the name of active transformations they map states of physical systems
into other potential states of the same systems thereby providing a framework for
defining and analyzing symmetries of physical laws. The mapping ϕ] associated
with any isometry ϕ of P is an example of this; it provides the most natural
approach to the notion of angular velocity in rigid body motion.

As introduced below (11) we use the symbol L for the set of linear maps V → V and
refer sometimes to its elements as tensors, when ‘element of L’ is considered annoying.
These tensors form a real associative involution algebra with unity (the identity map 1;
the zero-element O of the algebra is given by O v = 0). Here it is understood that the
linear operations are carried over from V and that the composition ◦ of maps is taken as
the product, and that the involution is given by L 7→ L∗, where L∗ is the map adjoint to
L. For the application of L ∈ L to a v ∈ V we mostly write Lv instead to the orthodox
notation L(v). To be sure, these definitions imply that we have

L ◦ L′ v = LL′ v , (αL+ α′ L′)v = αLv + α′ L′ v ,

Lv ·w = v · L∗w , L = L∗∗ , (L ◦ L′)∗ = L′∗ ◦ L∗
(46)

for all L,L′ ∈ L,v,w ∈ V, α, α′ ∈ R. For α−1 L one also writes L/α or L
α .

The product operation deserves a remark: For general mappings V → V the compo-
sition is computationally a difficult operation. Such a mapping has to be defined as an
algorithm, and thus also products of such mappings have to be defined as an algorithms
for which the the algorithms which represent the factors are function arguments. In the
language C++ algorithms can be coded as classes, the instances of which are called func-
tion objects and coding the composition operation is straightforward. However, iterating
the composition such as required in studies of dynamical systems lets the algorithm grow
in a way that provokes stack overflow. Of course, the execution time will grow linearly
with the number of iterations, which is hardly acceptable in dynamical simulations.

16

With linear mappings we are in a better position since these have a representation
in terms of numerical parameters (matrix elements) which allow us to express the op-
erations (46) in terms of these elements. Actually, for any selected orthonormal triplet
(e1, e2, e3) the mapping

Φe : L → M(3,R) , L 7→ (ei · L ej)i,j∈{1,2,3} =: (Lij)i,j∈{1,2,3} (47)

is an isomorphism to the ring M(3,R) of real 3 × 3 matrices. (As is well-known, also
non-orthonormal bases in V define similar isomorphism but for them one needs the dual
basis too in order to express the matrix elements.) Therefore each product or power of
linear mappings will be again be representable as such a matrix. Only rounding errors
are reminiscent of the chain of operations which led to this matrix. If a linear map is
known to have particular properties, such as being orthogonal, one may characterize it
by fewer parameters than 9 real matrix elements and one may be able to express the
parameters of the product in terms of the parameters of the factors. Even families of
non-linear transformations may allow such a representation of their product in terms of
real parameters. This observation led to the theory of Lie groups. For the various types
of special linear maps to be introduced in the rest of this chapter we will always point
out how their product can be expressed directly in terms of these special types.

4.1 Determinant, trace, and the operation of inversion

Let (u,v,w) ∈ V × V × V such that det(u,v,w) 6= 0, then we define for any L ∈ L the
numbers det(L) and tr(L) (trace of L) by

det(L) :=
det(Lu, Lv, Lw)

det(u,v,w)
,

tr(L) :=
det(Lu,v,w) + det(u, Lv,w) + det(u,v, Lw)

det(u,v,w)
.

(48)

It turns out that these definitions are independent of the determinant function and the
vector triplet. They satisfy for all L,L′ ∈ L

det(L ◦ L′) = det(L) det(L′) , det(L) = det(L∗) , det(1) = 1 ,

tr(L+ L′) = tr(L) + tr(L′) , tr(L ◦ L′) = tr(L′ ◦ L) , tr(L) = tr(L∗) , tr(1) = 3

(49)

The trace operation allows to define a scalar product in the linear space L:

L · L′ := tr(L∗ ◦ L′) . (50)

The absolute value
√
L · L, associated with this scalar product is the Hilbert-Schmidt

norm, which is always larger or equal to the usual operator norm

‖L‖:= sup {|Lv| : v ∈ V, |v| = 1} . (51)

17

In terms of matrix elements (47) one has the standard formulas for the determinant and
the trace

tr(L) = L11 + L22 + L33 ,

det(L) =
∑

σ∈Perm({1,2,3})

sign(σ) L1σ(1) L2σ(2) L3σ(3) .
(52)

The famous characteristic polynomial is given by

det(λ1− L) = λ3 − tr(L)λ2

+ (L11 L22 − L12 L21 + L11 L33 − L13 L31 + L22 L33 − L23 L32)λ− det(L) .

(53)

Each L ∈ L determines two linear subspaces of V: the null space or kernel N (L) :=
L−1({0}) and the range of values L(V). L is injective iff the first of those equals {0}
and surjective iff the second of those equals V. Both properties have a natural algebraic
characterization:

L injective ⇐⇒ ∃ L′ L′ ◦ L = 1 (54)

L surjective ⇐⇒ ∃ L′ L ◦ L′ = 1 (55)

These statements hold in any linear space. In finite-dimensional spaces, as for our V, we
easily see

dim(N (L)) + dim(L(V)) = dim(V) , (56)

det(L) = 0 ⇐⇒ dim(L(V)) < dim(V) ⇐⇒ dim(N (L)) > 0 (57)

which implies

L surjective ⇐⇒ L injective ⇐⇒ L bijective ⇐⇒ det(L) 6= 0 . (58)

For each bijective L ∈ L one writes L−1 for its inverse and has

L−1 ∈ L , L−1 ◦ L = L ◦ L−1 = 1 , (L−1)−1 = L , det(L−1) = det(L)−1 . (59)

Of course, for bijective L,L′ ∈ L the product is bijective, as is L∗, and we have

(L ◦ L′)−1 = (L′)−1 ◦ L−1 , (L∗)−1 = (L−1)∗ . (60)

Therefore, the bijective elements of L form a group with unity, multiplication, and
inversion as defined above. This group is normally named the general linear group in
three dimensions GL(3,R). The subset of elements L satisfying det(L) = 1 is the special
linear group in three dimensions SL(3,R). An element L of GL(3,R) which satisfies
L−1 = L∗ is said to be orthogonal ; it also satisfies L ◦ L∗ = L∗ ◦ L = 1 and

Lv · Lw = v ·w ∀ v,w ∈ V . (61)

The orthogonal elements form a subgroup O(3) of GL(3,R). There is no need to express
reference to the real numbers in the notation since the corresponding group in complex

18

spaces, the unitary group, is named by a different letter: U(3). Within O(3) we have a
further subgroup singled out by satisfying any of the two properties

det(L) = 1 , Lv × Lw = L(v ×w) ∀ v,w ∈ V . (62)

which are equivalent on O(3). This is the special orthogonal group SO(3) and its elements
are called rotations. Since the rotations thus are compatible with all operations which
define an Euclidean oriented vector space and (since they are invertible) they are the
isomorphisms of such spaces.

4.2 Eigenvalues and eigenvectors

By definition, an eigenvalue of L ∈ L is a number λ ∈ R for which there is a vector
x ∈ V,x 6= 0, such that Lx = λx. Each vector having all the properties mentioned here
for x is called an eigenvector of L, and λ is said to be the eigenvalue belonging to x.
An interesting fact concerning L is: Each L ∈ L has at least one eigenvector. As is well
known, and is an easy consequence of (57), λ is an eigenvalue of L iff det(λ1− L) = 0.
Equation (53) shows that this means for λ that it be the root of a polynomial of third
order. Such a root exists for sure since every polynomial of an odd order can easily
be shown to attain positive as well as negative values and is continuous. This has an
interesting implication for elements of SO(3): For each element of O(3) we see from (61)
that all eigenvalues belong to {+1,−1}. To see that +1 is an eigenvalue we thus need
only to show that there is an eigenvalue > 0: The characteristic polynomial of L has
the value −det(L) for λ = 0 and tends to +∞ for λ tending to +∞. For L ∈ SO(3)
the term −det(L) is negative, and we have a sign change in (0,+∞) which implies the
existence of a positive root. The eigenvector to which the eigenvalue +1 belongs is an
invariant vector which represents an axis of rotation. The plane formed by the vectors
orthogonal to the axis thus is also invariant. In this plane a mapping is induced which
necessarily belongs to SO(2). (Definition and properties of SO(2) are so simple that
they are taken for granted.) Unless their rotation angle is π there are no eigenvalues of
this map. For π-rotation obviously every vector is an eigenvector to eigenvalue −1.

4.3 The exponential function

These operations allow us to associate with each L ∈ L and each power series with
real coefficients and with infinite radius of convergence (e.g. a polynomial) a tensor by
replacing the variable of the the power series by L. Studying the set of polynomials p
for which p(L) = O is the usual algebraic approach to the spectral theory of L. However,
also power series of transcendental functions play a useful role, particularly that of the
exponential function

exp(L) := 1 + L+
1

2
L ◦ L+

1

2 · 3
L ◦ L ◦ L+ · · ·+ 1

n!
Ln · · · . (63)

For each L this term represents a linear map. On the other hand, this term depends on
L in a non-linear manner. In quantum theory a corresponding mixed non-linear/linear

19

structure reconciles the linear state structure (superposition principle) with the non-
linearity associated with interaction (roughly: ’the whole is more than the sum of its
parts’). The following properties hold:

exp(O) = 1 , (exp(L))∗ = exp(L∗) , det(exp(L)) = exp(tr(L)) , (64)

L ◦ exp(L′) ◦ L−1 = exp(L ◦ L′ ◦ L−1) , (65)

L ◦ L′ = L′ ◦ L ⇐⇒ exp(L) ◦ exp(L′) = exp(L+ L′) . (66)

L ∈ L is said to be symmetric iff L = L∗ and skew-symmetric iff L = −L∗. Each L ∈ L is
the sum of a symmetric element Ls := 1

2(L+L∗) and a skew-symmetric (anti-symmetric)
one La = 1

2(L − L∗). From (64) and (66) one easily finds that exp(L) is orthogonal iff
L is skew-symmetric, and that exp(L) is symmetric iff L is symmetric. If L and L∗

commute (i.e. L ◦ L∗ = L∗ ◦ L) statement (66) yields a factorization of exp(L)

exp(L) = exp(Ls + La) = exp(Ls) ◦ exp(La) (67)

into a symmetric and an orthogonal factor which is similar to the polar decomposition
in 4.7. It is, however, not identical to it since in the present case the eigenvalues of the
symmetrical factor need not to be positive.

4.4 Homotheties, dyads, and projectors

There are two types of tensors which play a prominent role in clarifying the structure of
L: multiples of the identity, also named homotheties, and the dyads. We start with the
multiples of the identity and set for all α ∈ R

α : V → V , v 7→ α v . (68)

Obviously α is symmetric and satisfies det(α) = α3 and tr(α) = 3α. Further, it
commutes with every L ∈ L: α ◦L = L◦α. Interestingly, the converse is also true: If L0

satisfies L0 ◦L = L ◦L0 for all L ∈ L, there is an α ∈ R such that L0 = α. The mapping

: R → L , α 7→ α (69)

is a homomorphism of rings. In particular, the zero-element O in the linear space L
equals 0, the unit element 1 of the associative algebra L equals 1.

Universal building blocks in L are the dyadic products of vectors a,b ∈ V which are
defined as follows:

|a 〉〈b | : V → V , v 7→ (b · v)a . (70)

We have det(|a 〉〈b |) = 0 and tr(|a 〉〈b |) = a · b. Let (e1, e1, e1) be an ortho-normal
triplet (i.e. a list of three mutually orthogonal unit vectors) and L ∈ L arbitrary, then
one has the representation

L = |L e1 〉〈 e1 |+ |L e2 〉〈 e2 |+ |L e3 〉〈 e3 | (71)

20

as a sum of three dyads. The algebraic properties of dyads are simple:

|u 〉〈v | ◦ |w 〉〈x | = v ·w |u 〉〈x | , (|u 〉〈v |)∗ = |v 〉〈u | , (72)

|u 〉〈v | · |w 〉〈x | = (u ·w) (v · x) . (73)

For each unit vector u the dyad
Pu := |u 〉〈u | (74)

is a projector. This means that it is idempotent (i.e. Pu ◦ Pu = Pu) and symmetric 9

. These properties are simple consequences of (72). An arbitrary projector P ∈ L is
characterized by its range P (V): Let e1, . . . , er be an orthonormal basis in this space,
then the following representation P = Pe1 +. . .+Per — actually a spectral representation
(see 4.6) — holds. For any linear subspace S ⊂ V we write PS for the projector which
is uniquely determined by the property that PS(V) = S. With PS also 1 − PS is a
projector. Its range is S⊥.

Equation (73) says that the map

⊗ : V × V → L , (v,w) 7→ |v 〉〈w | (75)

is a tensor product of Euclidean spaces. This means that the function is bilinear and
that scalar products of tensors and vectors are related by

(v ⊗w) · (v′ ⊗w′) = (v · v′) (w ·w′) . (76)

4.5 Linear maps induced by the vector product

Just as the scalar product allowed us to define the dyads, also the vector product allows
defining an interesting subset of L:

Aa : V → V , v 7→ a× v . (77)

For each a ∈ V we have Aa ∈ L and the association a 7→ Aa sets up a bijection between
vectors and skew-symmetric tensors. Some authors (e.g. [23], p. 211) write â for that
Aa, a notation which we have used up to denote unit vector formation. One easily shows
det(Aa) = tr(Aa) = 0. The well-known identity

u× (v ×w) = (u ·w) v − (u · v) w (78)

shows that the product of maps of type (77) is a linear combination of a dyad and a
homothety:

Au ◦Av = |v 〉〈u | − (u · v)1 (79)

and the Jacobi identity (5) implies

Au ◦Av −Av ◦Au = Au×v . (80)

9There is another terminology (which will not be used here) according to which idempotent linear maps
are projectors and symmetric projectors are orthogonal projectors or ortho-projectors.

21

Although the trace of any Au vanishes, it allows recovering the scalar product:

tr(Au ◦Av) = tr(|v 〉〈u |)− (u · v) tr(1) = −2u · v . (81)

For the skew-symmetric part of a dyad the associated vector is therefore given by

|u 〉〈v | − |v 〉〈u | = Av×u . (82)

In discussing the motion of rigid bodies we will encounter the following vector equation,
which is written here followed by its solution:

x + a× x = y ⇐⇒ x =
y − a× y + (a · y)a

1 + a · a
. (83)

In terms of inversion of linear maps this may be written as

(1 +Aa)−1 =
1−Aa + |a 〉〈a |

1 + a · a
. (84)

A more general version of this, the resolvent (λ−Aa)−1, λ ∈ R can, due to the obvious
property

Aαa = αAa (85)

be expressed in terms of (84)

(λ−Aa)−1 =

(
1 +A− a

λ

)−1
λ

. (86)

Many writers, especially in physics, prefer matrices over linear maps and so represent
the matrix belonging to Aa (with respect to a positively oriented orthonormal basis) in
terms of spin matrices (for spin 1)

S1 =

0 0 0
0 0 −1
0 1 0

 , S2 =

 0 0 1
0 0 0
−1 0 0

 , S3 =

0 −1 0
1 0 0
0 0 0

 (87)

as (Aa)ij =
∑3

k=1 ak(Sk)ij . It is instructive to note that this holds in any positively
oriented basis with the same matrices Si. With the Levi-Civita epsilon function

ε : {1, 2, 3}×{1, 2, 3}×{1, 2, 3} → {−1, 0, 1} , (i, j, k) 7→ −1

2
(i−k)(j−i)(k−j) (88)

the matrices Si can be written as

(Si)jk = −εijk . (89)

They enjoy the property [Si, Sj] := SiSj − SjSi =
∑3

k=1 εijkSk which mirrors (80). A
beneficial property of the spin matrices is that they provide an algorithm for finding a
in the representation S = Aa of an arbitrary skew-symmetric S ∈ L.

ai = −1

2
tr(S Si) , ∀i ∈ {1, 2, 3} , (90)

where S under the trace is the matrix of S with respect to the basis to which the
components ai refer.

22

4.6 Spectral representation of symmetric tensors

With symmetric tensors there is more structure associated than with the skew-symmetric
ones: For any symmetric L ∈ L there is a triplet (λ1, λ2, λ3) of real numbers (the
eigenvalues of L) and an Euclidean system of reference (e1, e2, e3) such that

L = λ1 | e1 〉〈 e1 |+ λ2 | e2 〉〈 e2 |+ λ3 | e3 〉〈 e3 | . (91)

Let us call this a spectral representation of L. It is uniquely determined by L if the
eigenvalues are mutually different and are indexed according to falling value. If, for
instance λ2 = λ3, then e2, e3 may be replaced by cosϕ e2 + sinϕ e3,− sinϕ e2 + cosϕ e3
for any ϕ ∈ R and the expression (91) remains a spectral representation of L. If all
eigenvalues are equal, (e1, e2, e3) may be replaced by any Euclidean system of reference
and the expression (91) remains a spectral representation of L (then L is a homothety:
L = λ1 = λ2 = λ3). For the smallest eigenvalue λ := inf {λ1, λ2, λ3} and the largest one
Λ := sup {λ1, λ2, λ3} we have the representation

λ = inf {v · Lv : v ∈ V, |v| = 1} , Λ = sup {v · Lv : v ∈ V, |v| = 1} . (92)

and the vectors for which the extrema are attained are the eigenvectors for the respective
values. For each function f : R → R one sees that

f(L) := f(λ1) | e1 〉〈 e1 |+ f(λ2) | e2 〉〈 e2 |+ f(λ3) | e3 〉〈 e3 | . (93)

is a definition, i.e. the linear map f(L) is independent of the spectral representation used
in (93). Remarkably, functions of L defined in this way and functions defined via power
series (see (63)) coincide if both construction methods work. A symmetric operator L
whose smallest eigenvalue is positive (in the sense of ≥ 0) is said itself to be positive.
For any such operator there is a well defined square root L1/2 and actually any power
Lp is defined with positive p. If the smallest eigenvalue of L is strictly positive, then Lp

is defined for any real p.
Typically the knowledge of spectral representations of two symmetric tensors L1 and

L2 does not entail a straightforward spectral representation of the sum (which, of course,
also is a symmetric tensor). In the three-dimensional case it is easy to obtain the spectral
representation by explicit formulas so that reference to the spectral properties of the
addends will hardly be necessary. For the corresponding problem for linear operators in
higher dimensional spaces a good tool is the second resolvent equation

(λ− (L1 + L2))
−1 = (λ− L1)

−1 + (λ− (L1 + L2))
−1 L2 (λ− L1)

−1 (94)

which can be iterated to yield

(λ− (L1 + L2))
−1 = (λ− L1)

−1 +

n∑
i=1

(λ− L1)
−1 L2

i (λ− L1)
−1

+ (λ− (L1 + L2))
−1 L2

n+1 (λ− L1)
−1

(95)

23

and thus arrives at an expression which no longer contains L1 +L2 if the final term can
be shown to vanish in the limit of growing n. A similar elimination of the sum in a
function expression is provided by the famous Kato-Trotter formula

exp(L1 + L2) = lim
n→∞

(exp(L1/n) exp(L2/n))n . (96)

The corresponding question for the product instead of the sum is less intricate. It can
have an answer only if L1 L2 is symmetric and this is the case iff L1 and L2 commute.
Then the situation is canonical: There exists a orthonormal triplet e1, e2, e3 of common
eigenvectors so that we have the spectral representations

L1 = λ1 | e1 〉〈 e1 |+ λ2 | e2 〉〈 e2 |+ λ3 | e3 〉〈 e3 |
L2 = µ1 | e1 〉〈 e1 |+ µ2 | e2 〉〈 e2 |+ µ3 | e3 〉〈 e3 |

(97)

and sum and product have the following obvious spectral representations

L1 + L2 = (λ1 + µ1) | e1 〉〈 e1 |+ (λ2 + µ2) | e2 〉〈 e2 |+ (λ3 + µ3) | e3 〉〈 e3 |
L1L2 = (λ1 µ1) | e1 〉〈 e1 |+ (λ2 µ2) | e2 〉〈 e2 |+ (λ3 µ3) | e3 〉〈 e3 | .

(98)

4.7 Singular value decomposition and polar decomposition

For tensors which are not symmetric one achieves something very similar to a spectral
representation by considering the symmetric tensor L∗ ◦ L, which equals 0 iff L = 0.
Since we need nothing to learn about the zero tensor, we assume L 6= 0. Obviously, all
eigenvalues of L∗ ◦ L are non-negative and so one writes them conveniently as squares
of numbers in writing down a spectral representation

L∗ ◦ L = λ21 | e1 〉〈 e1 |+ λ22 | e2 〉〈 e2 |+ λ23 | e3 〉〈 e3 | . (99)

Omitting the terms λ2i | ei 〉〈 ei | with λi = 0 we write this

L∗ ◦ L =
r∑
i=1

λ2i | ei 〉〈 ei | , 1 ≤ r ≤ 3 (100)

where now all λi > 0 and the ei are an ortho-normal list of vectors which is uniquely
determined if the λi are mutually different. Defining

fi :=
1

λi
Lei = unit vector in the direction of Lei (101)

gives us an orthonormal list (fi)i∈{1,...,r} of vectors which provides the surprisingly simple
representation

L =

r∑
i=1

λi | fi 〉〈 ei | (102)

which is known as a singular value decomposition of L. It allows defining the pseudo
inverse of L as

L+ =
r∑
i=1

1

λi
| ei 〉〈 fi | . (103)

24

Further, (102) implies what is called the polar decomposition of L:

L = L̂ ◦ |L| , where |L| :=
r∑
i=1

λi | ei 〉〈 ei | , L̂ :=
r∑
i=1

| fi 〉〈 ei | (104)

which implies

L̂∗ ◦ L̂ =
r∑
i=1

| ei 〉〈 ei | , L̂ ◦ L̂∗ =
r∑
i=1

| fi 〉〈 fi | . (105)

Although a singular value decomposition of L is determined uniquely by L only if the
λi all are different, the tensors L+, |L|, and L̂ are uniquely determined by L. From
(104) it is clear that (f1, . . . , fr) is an orthonormal basis in L(V), and (e1, . . . , er) is an
orthonormal basis in E(L) := N (L)⊥, the set of all vectors which are orthogonal to all
vectors in the null space N (L). Essential domain would be an expressive name for E(L)
since all values y = L(x),x ∈ V can already be obtained as L(x′) for some x′ ∈ E(L).
From (105) we see that L̂∗ ◦ L̂ is the projector onto E(L) and L̂ ◦ L̂∗ is the projector
onto L(V). The factor |L| leaves E(L) invariant. L̂, restricted to E(L), is a bijection
onto L(V). Restricted to the ortho-complement N (L) of E(L) L̂ vanishes. L̂ of such
a structure is said to be partially isometric. Therefore, for bijective L the factor L̂ is
orthogonal. Simplifying circumstances prevail for normal 10 tensors, i.e for tensors L
satisfying L◦L∗ = L∗ ◦L. For them we have N (L) = N (L∗) and therefore L(V) = E(L).
It should be noticed that in real vector spaces normality, unlike symmetry, does not
guarantee the existence of a complete set of eigenvectors as it does in complex spaces.
For instance, rotation with a rotation angle different from π (see next section) have only
a single eigenvector, namely the rotation axis.

As an instructive example we investigate the singular value decomposition of the skew-
symmetric map Aa (see (77)). For the sake of simplicity we assume |a| = 1, to which
the general case can be reduced due to (85). We form a positively oriented orthonormal
basis a1,a2,a3 the first member of which is a: a = a1. First, we have to consider
the expression of (99): A∗a ◦ Aa = −Aa ◦ Aa = (by (79)) = 1 − Pa. By the statements
following (74) this is the projection to the plane {a}⊥. More explicitly, |Aa| = Pa2 +Pa3 .
Thus, using the notation introduced so far for L: r = 2, e1 = a2, e2 = a3, λ1 = λ2 =
1, f1 = a × e1 = a1 × a2 = a3 = e2, f2 = a × e2 = a1 × a3 = −a2 = −e1. Since the
non-zero singular values all equal 1, we see from (102) and the last equation of (104)

that Âa = Aa.

5 Rotations

As was stated in 4.3, for each skew-symmetric map S the exponential exp(S) is orthog-
onal. Further, det(exp(S)) = exp(tr(S)) = exp(0) = 1 and thus exp(S) ∈ SO(3). Now,
each skew-symmetric S ∈ L is of the form Aa for some a ∈ V (see (90)). So let us consider
exp(Aa). Writing a = ϕ n, with the unit vector n := â, we have Aa = ϕ ◦An = ϕAn so

10|a 〉〈b | fails to be normal whenever a and b are linearly independent; so there is nothing pathological
about a tensor which is not normal

25

that we have to compute the powers of An. This is surprisingly easy due to the following
convenient relations: An◦An = Pn−1 (see (74) for Pn, and (79)), Pn◦An = An◦Pn = 0,
and Pn ◦ Pn = Pn. They allow us to sum up the exponential series and to obtain

exp(Aϕn) = exp(ϕ An) = Pn + cosϕ (1− Pn) + sinϕ An =: R(ϕ,n) . (106)

This represents the rotations in terms of a rotation angle ϕ and a rotation axis n.
The angle ϕ is determined uniquely, if restricted to 0 ≤ ϕ ≤ π. The rotation axis is
determined uniquely if ϕ 6= π, otherwise n and −n correspond to the same rotation. It
is easy to see that any rotation which has an invariant vector (i.e. an eigenvector with
eigenvalue 1) can be represented by the right-hand side of (106). That every rotation
has in fact an invariant vector was shown in subsection 4.2. Thus

SO(3) = {R(ϕ,n) : ϕ ∈ [0, π], n ∈ V̂} , (107)

where, of course, V̂ := {v̂ : v ∈ V}.
Rotations will play a decisive role in formulating a time-stepping algorithm for rigid

bodies. In this algorithm, rotations have to act on many vectors and for many pairs
of rotations R,R′ one has to form the composition R ◦ R′. It is therefore important
to have fast algorithms for these operations. I use here the method of Euler-Rodrigues
parameters, which is the most efficient one known. It seems to go back, (e.g. [13]), to
the French mathematician Olinde Rodrigues, who wrote about it as early as 1840 [15].
Several rediscoveries happened in newer times, one—in 1986—by myself [16].

To arrive at this economic formulation we consider (106) when acting on a vector x:

R(ϕ,n)x = cosϕ x + (1− cosϕ) (n · x)n + sinϕ n× x . (108)

As is well known, for all ϕ ∈ (−π,+π)

sinϕ =
2 tan(ϕ/2)

1 + (tan(ϕ/2))2
, cosϕ =

1− (tan(ϕ/2))2

1 + (tan(ϕ/2))2
. (109)

Writing t for tan(ϕ/2) we get from (108)

R(ϕ,n) x =
(1− t2)x + 2 t2 (n · x)n + 2 tn× x

1 + t2
(110)

and in terms of the vector r := tn = tan(ϕ/2) n

R(ϕ,n) x =
(1− r · r)x + 2(r · x)r + 2r× x

1 + r · r
=: R(r) x . (111)

What we have achieved thereby is that we have no longer two heterogeneous parameters
— a rotation angle and a rotation axis — but a single parameter which is simply an
element of V. For a rotation given in terms of this new parameter r we writeR(r) instead
of R(r) since we then can use R as the name of a map V → SO(3) even if the context
doesn’t provide function arguments which would resolve ambiguities. If some r ∈ V is

26

introduced as a means to bring about the rotation R(r) it will be called a rotation vector.
Often it will be convenient to have for the term R(r) x a more symmetrical notation.
Therefore, we define the operation ∗ : V × V → V

r ∗ x :=
(1− r · r)x + 2(r · x)r + 2r× x

1 + r · r
; (112)

it is linear in the second argument, non-linear in the first one, and — since the nomina-
tor never vanishes — continuous with respect to the standard topologies of the spaces
involved.

The rotations R(π,n) now play an exceptional role since these would correspond to
rotation vectors r of length ∞ (of course, such vectors don’t exist in V). For |r| � 1
the term r ∗ x can be well approximated by a very simple one:

r ∗ x ≈ (−r · r)x + 2(r · x)r

r · r
= 2(r̂ · x)r̂− x = (2Pr̂ − 1)x

= (Pr̂ − (1− Pr̂))x = R(π, r̂)x
(113)

which does no longer depend on the length of r and is invariant with respect to r 7→ −r.
Actually one finds

‖R(r)−R(π, r̂)‖= 2

1 + r · r
, (114)

where the norm from (51) is used. We may wonder whether π-rotations also play an
exceptional role with respect to algebra. This is indeed the case: they are the only
unipotent elements:

U ∈ SO(3) ∧ U ◦ U = 1 ⇔ ∃n∈V̂ U = R(π,n) . (115)

In the algebra L (of which SO(3) is a subset) any unipotent element U determines an
idempotent element P = 1

2(1 + U). Since in our case U is orthogonal, it follows that
P is symmetric and, therefore, a projector. Now U can be expressed in terms of P as
U = 2P − 1 = P − (1 − P) which is the representation from (113) with P = Pr̂, so
that we have learned that for an unipotent U ∈ SO(3) the projector P = 1

2(1 + U) has
a one-dimensional range. Then P ′ := 1 − P is a projector with two-dimensional range
and U ′ := 2P ′−1 is a new unipotent orthogonal element of L. One easily sees U ′ = −U
and, hence, detU ′ = −1, U ′ ∈ O(3)\SO(3). Actually, U ′ is a reflection with respect to
the plane for which r̂ is a normal vector. We thus see that the unipotent elements of
SO(3) form a bridge to the larger group O(3) which houses rotations and reflections.

As a direct consequence of (107) we have

R(V) = {R ∈ SO(3) : R ◦R 6= 1} . (116)

Obviously it would be canonical to get all of SO(3) by such a mapping. This can be
achieved by extending (and compactifying) V in a natural manner to

Vc = V ∪ P(V) , (117)

27

where P(V) is the projective space associated with V: its elements are the equivalence
classes 11 in V̂ with respect to the relation v ∼ w iff v = w or v = −w. This allows
writing ±v (i.e. {v,−v}) for the generic element of P(V). Further, we will use the
‘projection onto the horizon’

π̃ : V → P(V) , v 7→ {v̂,−v̂} . (118)

Since V and P(V) are disjoint sets (no element of V equals an element of P(V), although
elements of P(V) have elements of V as elements) we may extend the definition of R to
Rc by defining Rc|V := R and defining on Rc on P(V) by

Rc(±v) := R(π,v) = Pv − (1− Pv) . (119)

It is clear that Rc is injective and satisfies Rc(Vc) = SO(3). It thus provides a a
bijection between Vc and SO(3). The group SO(3) carries a natural topology which
may be characterized among other equivalent forms as the metric topology generated by
the Hilbert-Schmidt norm (see (50) et seq.). The main topological properties of SO(3)
are that it is compact and twofold connected. We define the topology on Vc by the rule
that a subset A of Vc is open iff the subset Rc(A) of SO(3) is open. Then, of course,
the mapping Rc is an isomorphism of topological spaces (also called homeomorphism)
and Vc has every topological property that SO(3) is known to have. Especially, Vc is
compact, a property which V, taken alone, does not have. Augmenting V with P(V) is
a process of compactification and Vc equals the closure V of V; P(V) is the boundary of
V in Vc since (114) entails for all v ∈ V

lim
r→∞

R(r v) = Rc(π̃(v)) . (120)

Trying to eliminate the trigonometric functions in expressing the action of rotations
on vectors suggests itself to anybody who strives for computational efficiency. It comes
as a gift that the formula for composition of rotations becomes unbeatably simple. Let
us consider the expression r ∗ (r′ ∗ x) and try it to write it in the form r′′ ∗ x. A lengthy
but straightforward computation gives r′′ = r+r′+r×r′

1−r·r′ . I found this relation pre-formed
in lecture notes [12], Figure 1, of my academic teacher Hans Joachim Meister which
I consulted in 1986 to simplify hobby-astronomical calculations, Figure 2. In just the
same time I was involved in an industrial project which aimed at modifying a video tape
drive in order to make it suitable as a random access storage system for high resolution
images. For following computationally the tape in its helical windings around the video
drum and guiding rollers I then used the formalism of rotation vectors extensively. The
first document in my project folder that used rotation vectors is dated 1986-01-27; it
derives the conversion between Euler angles and rotation vectors.

The combination law (product, written as ◦) in SO(3) can be carried over via the
bijection Rc to a combination law in Vc (also written as ◦) 12

◦ : Vc × Vc → Vc , (a,b) 7→ Rc(R−1c (a) ◦ R−1c (b)) . (121)

11there are realizations of projective spaces which don’t make use of unit vectors
12As Figure 2 shows, I initially used the symbols ∗ and ◦ differently.

28

Figure 1: The composition of rotation axis and rotation angle in the lecture notes edited
by Professor Meister 1965

Figure 2: Combination of rotation vectors in one of my Basic programs of 1986

For the case of normal rotations (i.e. rotations with a rotation angle different from π)
we have as pointed out before:

r ◦ r′ := r + r′ + r× r′

1− r · r′
if r · r′ 6= 1 . (122)

Equation (120) determines also the results of map ◦ for π-rotations as arguments or as
results:

r ◦ r′ := π̃(r + r′ + r× r′) if r · r′ = 1 , (123)

(±n) ◦ r :=

{
−n+n×r

n·r if n · r 6= 0,

π̃(n + r + n× r) if n · r = 0 ,
(124)

r ◦ (±n) :=

{
−n+r×n

n·r if n · r 6= 0,

π̃(r + n + r× n) if n · r = 0 ,
(125)

(±n) ◦ (±n′) :=

{
−n×n′

n·n′ if n · n′ 6= 0,

π̃(n× n′) if n · n′ = 0 .
(126)

The operation ∗ extends naturally to the case that the first argument is in P(V):

(±n) ∗ x := Rc(±n) x = (2Pn − 1) x . (127)

29

Let us compile the basic properties of the operations ∗ and ◦, where now r, r′ ∈ Vc,
x ∈ V, and for r ∈ Vc\V the element −r is set to mean r.

Rc(r) x = r ∗ x , (128)

(r ◦ r′) ∗ x = r ∗ (r′ ∗ x) , r ◦ (−r) = 0 , r ◦ 0 = r , r ◦ r′ = (r ∗ r′) ◦ r , (129)

r ◦ (r′ ◦ r′′) = (r ◦ r′) ◦ r′′ , r ∗ (r′ ∗ r′′) = (r ∗ r′) ∗ r′′ , (130)

which can be used to define ◦ in terms of ∗ and vice versa. From this we have the
following properties of map Rc

Rc(r ◦ r′) = Rc(r) ◦ Rc(r′) , (131)

which motivates the notation r ◦ r′ and

Rc(−r) = Rc(r)−1 , Rc(0) = 1 , Rc(r) ◦ Rc(r′) ◦ Rc(r)−1 = Rc(Rc(r) r′) . (132)

From the following two equations we encountered the first one just at the beginning
of this section and its well-known twin should not remain unmentioned:

det(R(ϕ,n)) = 1 , tr(R(ϕ,n)) = 2 cos(ϕ) + 1 . (133)

Let us consider the computational realization of these expressions: As (112) is written,
it defines the term but taking it literally as a recipe for computation would be not wise.
What one would actually do is

s0 := r · r , s1 := 1/(1 + s0) , s2 := 1− s0 , x′ := 2x , s3 := r · x′ ,
r ∗ x := s1(s2x + s3r + r× x′) .

If one needs to compute r ∗ x for some fixed r and a multitude of x’s it pays first to
compute the 3 × 3-matrix which represents R(r). Expressing everything in terms of
components (identifying V with R3 which a program would do anyway) one can do even
slightly better by extracting a common factor (c in the following): Putting r = (r1, r2, r3)
and x = (x1, x2, x3) we define y = r ∗ x by

R :=

 r1
2 + b r1r2 + r3 r1r3 − r2

r1r2 − r3 r2
2 + b r2r3 + r1

r1r3 + r2 r2r3 − r1 r3
2 + b

 , (134)

yi := c(Ri 1x1 +Ri 2x2 +Ri 3x3) , i = 1, 2, 3 , (135)

where the numbers b and c are defined as follows:

ρ :=r1
2 + r2

2 + r3
2 ,

b :=(1− ρ)/2 ,

c :=2/(1 + ρ) .

(136)

30

For a numerical realization of the composition law of rotations we never need to
consider π-rotations since these can be approximated by rotations with an rotation angle
close to π arbitrarily well. We select a small number ε ≈

√
ε1/2, (here ε1 is the spacing

of the numerical lattice at number 1.0, thus ε1 = 1.11 · 10−16 for the double precision
floating point numbers of C++) and define

r ◦ r′ := r + r′ + r× r′

N
, (137)

where the nominator N is defined

N :=

{
1− r · r′ if |1− r · r′| > ε

ε sign(1− r · r′) else (here sign(0) := 1) .
(138)

The idea in setting ε is that a rotation vector r of length N generates a rotation which
differs from a π−rotation only by numerical noise. For this difference to a π−rotation we
employ (114). What kind of approximation is implied in this proposed approach to ig-
nore the π-rotations? Since these form a part of SO(3) we seem to work with a defective
structure which isn’t even a group 13 . Actually, there is no problem involved: within
our computational model of SO(3) every pair of elements has a well-defined product,
and each element has its well-defined inverse. The group axioms, such as associativity
of multiplication, is satisfied up to numerical noise just as it is satisfied for the compu-
tational model of the real numbers as provided by the implementation of floating point
arithmetic on any computer. Our numerical representation of SO(3) approximates the
ideal to represent a group in the same spirit as computer numbers approximate the ideal
to represent the field of real numbers.

According to my understanding, it would be completely adequate to introduce this
computational model without the preparations presented here with the complicated-
looking additions (123), (124), (125), (126) to the simple basic composition law (122).
I carried out these things here, since I experienced that scientists tend to consider the
Euler-Rodrigues formalism suffering from deficiencies such as ‘not being able to represent
π-rotations’. So I considered it potentially helpful to make completely clear that π-
rotations are obtained via compactification (which is a closure with respect to a suitable
topology). In all what follows, I’ll make no difference between R and Rc and consider
only rotations ∈ R(V) (again, since any rotation can be approximated arbitrarily well by
those). Actually, I consider the rotation group no longer as the group SO(3) but as the
set V endowed with the operation ◦ as multiplication. To be precise, the multiplication
is considered to be defined according to equations (137) and (138) with a parameter ε set
according to the numerical precision of the floating point number type being employed.
For clarity, we denote exactly this version of the rotation group with a special symbol,
namely G (for group).

For L ∈ L and r ∈ V we define the ‘rotated operator’ Lr by

Lrv := r ∗ L((−r) ∗ v) for all v ∈ V , (139)

13It is a groupoid if we restrict the definition of the product to those cases in which the result is not a
π-rotations.

31

and get
Lr = R(r) ◦ L ◦ R(−r) = R(r) ◦ L ◦ R(r)−1 . (140)

The form of a rotated dyad is especially simple and computationally efficient:

|a 〉〈b |r = | r ∗ a 〉〈 r ∗ b | . (141)

AlsoR(r) is closely related to dyads: Let (e1, e2, e3) be an Euclidean system of reference,
then also

(f1, f2, f3) := (r ∗ e1, r ∗ e2, r ∗ e3)

is an Euclidean system of reference and

R(r) =

3∑
i=1

| fi 〉〈 ei | (142)

which is just the polar decomposition of R(r) (the factor |R(r)| is the identity).
There is an interesting generalization of (106) when we consider the rotation angle ϕ

as descriptor of the the complex number exp(iϕ) and generalize to the general complex
number z = r exp(iϕ) in a natural manner:

R(z,n) = Pn + r cosϕ (1− Pn) + r sinϕ An where r := |z|, ϕ := arg z . (143)

For each unit vector n the mapping C → L , z 7→ R(z,n) is a homomorphism of rings.
(Remember the mapping R → L , r 7→ r which also is a homomorphism of rings.) This
allows, for instance, expressing the resolvent of rotations elegantly

(z 1−R(ϕ,n))−1 = R

(
1

z − exp(iϕ)
, n

)
(144)

which helps to code the exponential function and the logarithm — topics that for the
rotation group will be treated in the following subsection — for the Euclidean group.
An efficient algorithm for applying R(z,n) to a vector is:

R(z,n)x = x‖+Re(z)x⊥+Im(z)n×x⊥ , where x‖ := (n ·x)n , x⊥ := x−x‖ . (145)

5.1 Curves of rotations

We now consider curves in the ‘manifold of rotations’, i. e. functions 14 R → G. As
we will see in the next subsection such curves correspond to motions of rigid bodies in a
rather direct way, and it is this connection that motivates looking into this matter here.
In the present subsection we look to the subject from a mathematical, structural, point
of view.

The fact that G defines a multiplication distinguishes curves φ : R → G which satisfy

φ(t1) ◦ φ(t2) = φ(t1 + t2) for all t1, t2 ∈ R (146)

14This is an ubiquitous theme in mathematics: sets get endowed with structure by defining real-valued
functions on them (e.g. coordinates) and functions from R into them (e.g. curves).

32

and will be called one-parameter groups in G if they satisfy the mild regularity property
that for each x ∈ V the mapping R → V, t 7→ φ(t) ∗ x is continuous. It is one of
the virtues of the Euler-Rodrigues formalism that it allows to represent these particular
curves in a simple and explicit manner: They all arise from the function exp : V → G
that allows us to express the rotation vector r directly from the vector a := ϕn (rather
than from angle ϕ and direction n separately) as r = exp(a). Let us define this function
first:

exp(a) := tan
|a|
2

â , exp(0) := 0 . (147)

For small arguments |a| � 1 this implies the approximation

exp(a) ≈ 1

2
a . (148)

There are good reasons to consider the factor 1/2 which appears here as unnatural and
to define ‘natural rotation vectors’ which are simply 2 times the conventional rotation
vectors. Some factors than would disappear (as in the formula under present consider-
ation) and in other places new factors would appear. If one would start from zero, one
probably should introduce such ‘natural rotation vectors’. Given that there are scien-
tific communities working with Euler-Rodrigues parameters (see [13],[14]), I prefer not
to provoke confusion by a new convention. We now have the two related facts: For each
a ∈ V the mapping t 7→ exp(ta) is a one-parameter group in G and each one-parameter
group in G is obtained by this construction. For the action of exponentials on vectors,
we have a simple relation

R(exp(a))x = exp(a) ∗ x = x + a× x +
1

2
a× (a× x) + . . . = exp(Aa)x , (149)

which on the right-hand side is free of Euler-Rodrigues operations and uses the conven-
tional exponential function of linear maps. This representation implies

R(exp(ta))x = exp(ta)∗x = x+ ta×x+
t2

2
a× (a×x) + . . . = exp(t Aa)x , (150)

and

lim
h→0

1

h
(exp(ha) ∗ x − x) = a× x . (151)

This exponential function is obviously bijective and its inverse, log, is given by

log(r) = 2 arctan |r| r̂ ≈ 2r , log(0) = 0 . (152)

The question naturally arises how the algebraic structure of V is related to the algebraic
structure of the one-parameter groups which are made from the elements of V by the
exponential function. Preparing the answer we rewrite what we already know: For each
a ∈ V we denote by ea the one-parameter group defined by ea(t) := exp(ta). The vector
a is said to be the generator of this one-parameter group, and it can be recovered from
it by

a =
1

t
log(ea(t)) (153)

33

which is valid for all t 6= 0. It is a natural situation that one has only an approximate
formula for ea(t) at hand which assumes t << 1. Then this formula will give a exactly if
the limit for t→ 0 is taken in (153). Now there are the following relations between the
algebraic operations in V and the algebraic operations in G: The one-parameter group
ea+b can be constructed out of the one-parameter groups ea and eb as

ea+b(t) = lim
n→∞

(
ea(t/n) ◦ eb(t/n)

)n
, (154)

and the one-parameter group ea×b can be constructed out of ea and eb as

ea×b(t) = lim
n→∞

(
ea(
√
t/n) ◦ eb(

√
t/n) ◦ ea(−

√
t/n) ◦ eb(−

√
t/n)

)n
. (155)

Finally, for any α ∈ R the one-parameter group eαa can be constructed out of ea without
needing limits

eαa(t) = ea(α t) . (156)

The three previous equations establish that V endowed with the vector product as mul-
tiplication is the Lie algebra 15 of the rotation group G. Further for all a,b ∈ V there is
a one-parameter group eAd(b)a defined as

eAd(b)a(t) = b ◦ ea(t) ◦ (−b) . (157)

It is instructive to compute the term Ad(b)a from this definition. First we get from the
fourth equation of (129) and from the small argument approximation of the exponential
function (148)

b ◦ ea(t) ◦ (−b) = b ∗ ea(t) ∼ b ∗ t
2
a .

and finally making use of (153) and the approximation of the logarithm in (152)

Ad(b)a = lim
t→0

1

t
log(b ◦ ea(t) ◦ (−b)) = lim

t→0

1

t
log(b ∗ t

2
a) = lim

t→0

1

t
(b ∗ ta) = b ∗ a .

Hence
Ad(b)a = b ∗ a = R(b)a . (158)

This indicates an exceptional situation the appreciation of which requires a look into
a more general scenario: The present definition of the adjoint representation works for
any Lie group. It associates with any group element an isomorphism of its Lie algebra
and does this in a manner that a (not necessarily faithful) representation of the Lie
group is generated. As an illustration of the general situation we consider the Lorentz
group. Its Lie algebra is 6-dimensional (generated by 3 angular displacements and 3
velocity displacements (‘boosts’)). The 6-dimensional adjoint representation is denoted
D(1,0)⊕D(0,1) whereas the ‘natural action’ is on the 4-dimensional Minkowski space and

15It is the simplest Lie-algebra in the infinite set of so called simple Lie algebras. It belongs to what is
called class A1 and is the only real compact form in this class.

34

is denoted D(1
2
, 1
2
). For the rotation group the ‘natural representation’ (i.e. R) and the

adjoint representation coincide.
For a general curve r(•) : R → G the angular velocity ωωω(t) at instant t is defined by

r(t+ h) = exp(2hωωω(t)) ◦ r(t− h) +O(h2) . (159)

and it turns out that for one-parameter groups the angular velocity is constant and
equals the generator of the group. This is in the same spirit as defining the derivative
of real-valued functions in terms of the locally best-approximating straight line. Here
straight lines are replaced by one-parameter groups. From (159) we get

exp(2hωωω(t)) = r(t+ h) ◦ −r(t− h) +O(h2) . (160)

and, due to (152)

ωωω(t) = lim
h→0

1

2h
log (r(t+ h) ◦ −r(t− h)) = lim

h→0

1

h
(r(t+ h) ◦ −r(t− h)) . (161)

This is a natural generalization of the definition of a derivative from a linear space to
a group, where one has to take into account that the factor 1

h in the second (log-less)
limit which is well defined in the present context, would not make sense if G would be
an arbitrary group. This is even more true for the definition of a standard derivation

ṙ(t) := lim
h→0

1

2h
(r(t+ h)− r(t− h)) (162)

which allows us to express the angular velocity as

ωωω(t) =
2

1 + r(t) · r(t)
(ṙ(t) + r(t)× ṙ(t)) . (163)

Interestingly a similar formula holds for the ‘back-rotated’ angular velocity:

ωωω′(t) := (−r(t)) ∗ωωω(t) = R(r(t))−1 ωωω(t) =
2

1 + r(t) · r(t)
(ṙ(t)− r(t)× ṙ(t)) . (164)

Expressing ṙ in terms of ω and r is also possible:

ṙ(t) =
1

2
(ωωω(t) +ωωω(t)× r(t) + (ωωω(t) · r(t)) r(t)) . (165)

We will also need the behavior of a ‘constant factor’ with respect to differentiation. One
easily finds by going back to the definition (122) that

d

dt
(r(t) ◦ c) =

1

1− r(t) · c
(ṙ(t) + ṙ(t)× c + (ṙ(t) · c) (r(t) ◦ c)) (166)

which is far from the naive expectation ṙ(t) ◦ c. Notice that, as seen from (159) directly,
the angular velocities along the curves t 7→ r(t) and t 7→ r(t) ◦ c coincide.

35

5.2 Rotational motion of a rigid body

Let us speak about how a rigid body is placed in space as its attitude 16 . Letting shrink
the body in size, lets attitude degenerate to position. The information that gets lost in
going from attitude to position is often called orientation, but this is a usage of the word
which is quite different from the meaning used in the present article. So we will speak
of angular attitude in this case. There are many ways to give a computationally useful
description of attitude. A particularly convenient one is to mark four indexed points on
the body (as body-fixed points 17) which define a frame ∈ FP . As the body moves, the
‘engraved’ frame moves with it (this is what ‘body-fixed’ means) and always represents
the changing attitude of the body. As a result, we get a function of time (formalized as
R) with values in FP . We write the time-dependent frame in the mixed form with one
point and three vectors (see (41)) as

F (t) = (p0(t), e1(t), e2(t), e3(t)) = (F0(t), ~F (t)) , t ∈ R , F0(t) ∈ P , ~F (t) ∈ FV .
(167)

This is our description of the general motion of a rigid body; it implies that the configu-
ration space of the rigid body is here represented by the set FP of frames in affine space
P.

We will be concerned first with a special case of this general notion in which there is a
body-fixed point which also is held fixed in space. Let us call such a motion a rotational
motion although most writers seem to associate with this term not only a fixed point
but an invariant rotational axis. The body engaged in rotational motion is also referred
to as a (the) spinning top. Without loosing generality we assume that in marking our
body-fixed frame we chose this fixed point as origin. Than the component F0(t) of our
frame is constant in time and only ~F (t) depends on t. This implies that the configuration
space of the spinning top is represented by the set FV of frames in the linear space V.

From (17) we know that FV is closely related to SO(3) and thus with G. The cor-
responding statement (45) relates FP with ISO(3). Corresponding to the transition
SO(3) 7→ G we will later construct a computational version E of ISO(3). The spaces
FP and FV are closely related to the groups ISO(3) and SO(3) in so far as these groups
act transitively and effectively on these spaces.

In addition to the body-fixed frame (e1(t), e2(t), e3(t)) let us agree on a space-fixed
frame F = (e1, e2, e3). This determines a time-dependent rotation g(t) ∈ G via

g(t) := F (t)/F =
3∑
i=1

| ei(t) 〉〈 ei | , (168)

Recall here the division of frames as defined in (15). The motion of the body thus is
described by a curve in space G. The group G thus plays the role of a configuration
space of the spinning top. As is obvious, this description depends on the selection of F .

16The intended meaning is as in attitude control in satellites
17the physical constitution of a rigid body makes this an unproblematic idealization

36

Making a different selection F ′ = (e′1, e
′
2, e
′
3) will give the description 18

g′(t) := F (t)/F ′ = (F (t)/F) (F/F ′) = g(t) (F/F ′)

in which all group elements g are multiplied by the fixed element F/F ′ ∈ G.
From this it easily follows that associating with the pair (t1, t2) of times the group

element
g(t1, t2) := g(t1) g(t2)

−1 = g′(t1) g
′(t2)

−1 = F (t1)/F (t2)

defines a mapping R × R → G which does not depend on selection of a master frame
(be it F or F ′). For any pair (t1, t2) we have g(t1, t2)

−1 = g(t2, t1) and for any triplet
(t1, t2, t3) we have g(t1, t2) g(t2, t3) = g(t1, t3). Notice that no ordering of the t-values
(such as the one following the indexing) is assumed here. Finally we have

g(t1, t2)F (t2) = F (t1) , F (t2) = g(t2, t1)F (t1) . (169)

This shows that g(·, ·) is an ‘evolution operator’ for the moving frames. In groups, the
one-parameter subgroups are known to be of great organizing value. These are functions
φ : R → G such that φ(t1)φ(t2) = φ(t1 + t2) for all t1, t2 ∈ R. As we have seen
in subsection 5.1 these are just the rotations around a fixed axis with constant angular
velocity. In our present context a ‘shifted version’ g(t) = φ(t)g0 of a one-parameter
subgroup φ is as natural as a genuine one-parameter subgroup. Its evolution operator
satisfies g(t1, t2) = φ(t1) g0 g

−1
0 φ(t2)

−1 = φ(t1 − t2) and therefore

g(t1 + h, t2 + h) = g(t1, t2) for all t1, t2, h ∈ R . (170)

This says that the evolution operator is invariant with respect to time-shift. Just as for
one-parameter subgroups one can follow the curve by successive multiplications

φ(nh) = φ(h)n for all h ∈ R, n ∈ N (171)

the frame evolution satisfying (170) can be followed by iterated multiplication:

g(t1 + h, t2 + h) g(t2 + h, t2) = g(t1 + h, t2) ⇒ g(t1, t2) g(t2 + h, t2) = g(t1 + h, t2)

⇒ g(t1, t2) g(t2 + h, t2)
n = g(t1 + nh, t2) .

The kinematic role of one-parameter subgroups (and their shifted versions) for rotational
motion is the same as the role of linear motion (at constant velocity) for motion of freely
movable point masses: they are suitable approximations to the true motion, valid for a
sufficiently small span of time. In this way they allow to define the notion of velocity,
here that of angular velocity.

So far, we were dealing with the kinematic aspects of rotational motion. We now turn
to the dynamics of rotational motion. We will see that the Euler-Rodrigues parame-
ters used here for the kinematic description are well suited to formulate the equations

18Here, and in the following, we write multiplication in G without the operation symbol ◦ (if the context
makes clear that the factors belong to G).

37

of motion of the rotating rigid body, both in the Lagrangian and, even more, in the
Hamiltonian framework. We will also see that this formulation allows a computational
treatment of rigid body motion without constrains. Any integrator for first order differ-
ential equations can be used to evolve the system. It is to be noted, however, that any
trajectory of the system reaches infinity (corresponding to rotations of rotation angle π)
on a regular basis and comes back from there to finity. Natural methods will be given
for handling this situation.

Let us consider the body as made of a huge number N of mass points (mi, pi) and
let, again, be p the point held fixed in rotational motion of the body. Then the inertia-
related properties of the body are described by the total mass m, the center of mass
pCM := p+ x, and the tensor of inertia Θ, which are defined as follows:

m :=

N∑
i=1

mi , x :=

∑N
i=1mi xi
m

,

Θ :=
N∑
i=1

mi

(
|xi|21− |xi 〉〈xi |

)
, where xi := pi − p .

(172)

Since this Θ as a sum of N symmetric tensors is a symmetric tensor, and thus has a
spectral representation of the form

Θ = I1 | e1 〉〈 e1 |+ I2 | e2 〉〈 e2 |+ I3 | e3 〉〈 e3 | , I1 ≥ I2 ≥ I3 > 0 , (173)

where the ordering of the eigenvalues is by convention and the positivity of all eigenvalues
is evident from (174) since otherwise rotation could bring about negative kinetic energy.

The tensor of inertia represents the connection between the kinematic motion descrip-
tor angular velocity ω and the dynamical motion descriptors angular momentum L and
kinetic energy T in the form

L = Θ ωωω , T =
1

2
ωωω ·Θωωω . (174)

The mutual orthogonal unit vectors e1, e2, e3 are along the principal axes of Θ and
the directions are assumed to be fixed such that e3 = e1 × e2 (this is always possible,
since we may any eigenvector multiply by −1). The ei are body-fixed vectors which we
use to characterize the attitude of the body.

Using also the space-fixed vectors e1, e2, e3 of the previous subsection we have a rota-
tion vector r which satisfies

e1 = r ∗ e1 , e2 = r ∗ e2 , e3 = r ∗ e3 . (175)

Assume the body placed in space in a way that its principal axes are parallel to these
vectors e1, e2, e3 (the position of the fixed point is understood as unchanged, of course).
Then we say that the body ‘is in reference position’ and its tensor of inertia is ‘the
reference version’ of the bodies tensor of inertia in generic position. This reference
version is then

I := I1 | e1 〉〈 e1 |+ I2 | e2 〉〈 e2 |+ I3 | e3 〉〈 e3 | (176)

38

and we have from (141)
Θ = Ir . (177)

Equations (141), (176) make the computation of Ir particularly efficient. Also the posi-
tion vector of the center-of-mass has a specific value, let us call it x0, in this reference
position. Its connection with x in (172) is given by

x = r ∗ x0 . (178)

Suppose that space P carries a scalar field Φ such that our body has a potential energy
Φ(pCM), where pCM is the location of the center-of-mass of the body. Then the potential
energy becomes a function of the bodies rotation vector r of the form

V (r) = Φ(p+ r ∗ x0) . (179)

In a homogeneous gravity field of strength g we have Φ(q) = −(q − p) · g and thus

V (r) = (r ∗ x0) · g . (180)

This term has to be added to the free Lagrangian and to the free Hamiltonian of the
spinning top in order to get a theory of the top spinning under the influence of gravity
or more general conservative forces if a different field Φ is chosen.

At first we consider the free case since it is only the kinetic energy term for which our
decision to use Euler-Rodrigues parameters as generalized coordinates poses non-trivial
problems — which, however, can be solved in a rather elegant manner, as will be shown
now. Using Euler-Rodrigues parameters as generalized coordinates means to write down
the Lagrangian in terms of r and ṙ. As a physical quantity (as opposed to a function of
specified variables) the free Lagrangian is the kinetic energy and thus given by

L = T =
1

2
ωωω · Irωωω =

1

2
R(r)−1ωωω · IR(r)−1ωωω =

1

2
ωωω′ · I ωωω′ . (181)

To express this in terms of r and ṙ we simply replace ωωω′ by the expression from (164)
and have

L(r, ṙ) =
2(s · I s)

(1 + r · r)2
, where s := ṙ− r× ṙ . (182)

Using coordinates with respect to basis e1, e2, e3 this Lagrangian is given as

L(r, ṙ) =
2I1 (ṙ1 − r2ṙ3 + r3ṙ2)

2 + 2I2 (ṙ2 − r3ṙ1 + r1ṙ3)
2 + 2I3 (ṙ3 − r1ṙ2 + r2ṙ1)

2

(1 + r21 + r22 + r23)2
.

(183)
This expression is not too complex. But due to the nominator, the Lagrangian equations
(of the second kind) become very complicated and I saw no sense so far in using them
in a numerical simulation. It came as a real surprise to me that passing to the Hamil-
tonian formulation turned out to be possible and to give canonical equations which are
much simpler than the Lagrangian equations. Let us see how this works. To make the

39

introduction of canonical momenta more transparent we use a simplified notation, which
does not always mention r:

M := 1 +Ar , ρ :=
1

1 + r · r
, (184)

which implies together with (84)

M−1 = ρ(1−Ar + | r 〉〈 r |) , (185)

Then

L = T = 2ρ2(ṙ ·M IM∗ ṙ) =
1

2
ṙ · p , where p :=

∂L

∂ṙ
= 4ρ2M IM∗ ṙ . (186)

Since the canonical momentum is an important quantity, we express it in terms of various
quantities which we encountered already:

p = 4
I(ṙ− r× ṙ) + r× I(ṙ− r× ṙ)

(1 + r · r)2
= 2

L′ + r× L′

1 + r · r
= L + L′ − 2

r · L′

1 + r · r
r , (187)

where L′ := I ωωω′ = R(r)−1 L. This shows that the canonical momentum p differs from
the angular momentum L. We are now in a position to form the Hamiltonian:

H := ṙ · p− L =
1

2
ṙ · p (188)

and are left with the task to express ṙ in terms of p. Due to the last equation in (186)
this only needs the inversion of simple matrices:

ṙ =
1

4ρ2
M∗−1 I−1M−1 p (189)

thus, due to (185) and (60)

H =
1

8ρ2
(M−1 p · I−1M−1 p) . (190)

Finally,

H(p, r) =
q · I−1 q

8
, where q := p + p× r + (p · r) r . (191)

Again, using coordinates with respect to basis e1, e2, e3 this Hamiltonian is given as

H(p, r) =
(p1 + p2 r3 − p3 r2 + s r1)

2

8I1
+

(p2 + p3 r1 − p1 r3 + s r2)
2

8I2

+
(p3 + p1 r2 − p2 r1 + s r3)

2

8I3
, where s := p1 r1 + p2 r2 + p3 r3 .

(192)

This makes available all the theory and practical integration methods for Hamiltonian
systems [21], [22],[23]. Especially the far-reaching results of [29] on approximate energy

40

conservation and conservation of ‘Noether charges’ can be applied. Also for the transition
to a quantum mechanical treatment the conventional starting point is reached. One
should note, however, that the Hamiltonian is not separable in the sense of [21], p. 76,
so that the largest part of this standard text says nothing about our system.

It turns out that not only the Hamiltonian but also the canonical equations can be
expressed in a simple manner:

ṙ = +
∂

∂p
H(p, r) = s + r× s + (r · s) r

ṗ = − ∂

∂r
H(p, r) = −r× s− (r · s)p− (p · r) s , where

s :=
1

4
I−1 (p + p× r + (p · r) r) .

(193)

As a physical quantity the term s equals ωωω′/2. Here it is important, however, that it is
given as a function of r and p. We thus have a highly non-linear, though very regular
(all functions are polynomials — at most of fifth order — in the dynamic variables)
system of ordinary differential equations for the time-dependent quantities r and p. In
these equations the linear map I is constant in time. It is, therefore, a tensor-valued
parameter. If r(t) has been obtained from these equations, the tensor of inertia of the
moving body results from (177) for which we can give the more explicit form

Θ(t) = R(r(t)) IR(r(t))−1 = Ir(t) . (194)

As an introductory example let us consider the special case that I is a homothety.

I = θ1 , θ > 0 . (195)

From physics it is clear that in his case a rotation with constant angular velocity is an
allowed motion. We expect to get this solution by writing all the vectors r,p, s as real
multiples of a constant unit vector e:

r = r e , p = p e , s = s e , ṙ = ṙ e , ṗ = ṗ e . (196)

For these quantities the system (193) implies

ṙ = s (1 + r2) =
p(1 + r2)2

4 θ

ṗ = −2 s r p = −r p
2 (1 + r2)

2 θ

s =
p (1 + r2)

4 θ
.

(197)

For the Hamiltonian (191) we get

H(p, r) = 2 θ s2 =
p2 (1 + r2)2

8 θ
(198)

41

and easily verify that the canonical equations resulting from it are in fact (197). The
key to solving these equations is to observe ṡ = 0. The most elegant way is to deduce
this from Poisson-brackets: ṡ = {H, s} = 2 θ {s2, s} = 0. Writing r = tanϕ/2 we get
ṙ = (tanϕ/2)′ ϕ̇/2 = (1 + (tanϕ/2)2) ϕ̇/2 = (1 + r2) ϕ̇/2. From the first equation of
(197) we now have s = ϕ̇/2. This implies ϕ̈ = 0 and ϕ = ω t+ ϕ0 and r(t) = tan ω t+ϕ0

2 .

The third equation of (197) says p(t) = 4 θ s
1+r(t)2

= 2 θ ω
1+r(t)2

. This represents the general

solution of (197) r(t) and p(t) in terms of two integration constants ω and ϕ0 (and the
system parameter θ). It is interesting to look at the numerical initial value problem
associated with (197). Since, as we have seen, s is a constant, the third equation of
(197) expresses p(t) in terms of r(t) so that it is sufficient to consider r. For simplicity
we put s = 1 and set the initial condition r(0) = 0. Then we are left with the first
equation of (197) in the form

ṙ = 1 + r2 (199)

and the solution consistent with our initial condition is r(t) = tan t. Of course, this
trajectory reaches infinity in finite time t = π/2. From the most basic facts concerning
the initial value problem of ordinary differential equations (e.g. [20], Theorem 2.1.3,
p. 102) this is plausible since the function r 7→ 1 + r2 is not globally Lipschitz on
R. Would r denote a position in space, reaching infinity would mean that the system
(or one of its components) would no longer belong to the ‘real world’ and following its
trajectory till infinity is the most one can reasonably do. How such a situation may arise
in the non-relativistic theory of gravitating point masses is described in [30]. In our case,
however, the singularity on the trajectory is only an artifact of the coordinate system.
Had we described the attitude of the body by a rotation angle instead of its tangent, no
singularity would occur. So, in order for our description of uniform rotation to make sense
from a practical point of view one should be able to continue time discrete trajectories
across the singularities (the exact trajectory has singularities for all tn = (n+ 1

2)π). This
is in fact the case and is explained with Figure 3. As the graphics there indicates the
method renders well the qualitative features of the tangent curve (notice that a modified
logarithmic y-axis is used) but is not very accurate, even for the rather short time step
which is employed in this example. So in the following treatment of the non-simplified
problem (193) a more accurate method is developed. Here one does not integrate over
the singularity but shifts it repeatedly to other places so that it does no influence the
computation.

Computing trajectories of (193) by means of the explicit asynchronous leapfrog method
[27] or the implicit Störmer - Verlet method ([22], equation (2.10) and [23], last triplet
of equations on p. 85) shows very good conservation of energy and angular moment in
regions where |r| is not too large, say lower than 10. (For larger |r| one could hold the
quality level of conservation by reducing the time step, which is not a favorable option.)
Large |r| means that the rotation angle is close to 180◦. For |r| = 10 we are off by an
angle of 11◦.5. This angle is not an absolute property of the attitude of our body. Instead
it reflects the relative attitude of our body and the basis e1, e2, e3. A simple change of
this basis gives our body a position r which is completely normal. For the computational
implementation I chose a particularly simple and efficient such change: As soon as |r|

42

H* functions *L
f@r_D := 1 + r^2

iniALF@r_, t_D := stateALF@r, f@rD, tD H*ALF: asynchronous leap-frog *L
stepALF@dt_, rCrit_, stateALF@r_, v_, t_DD := Module@

8Τ = dt � 2, ra = r, va = v, ta = t<,
If@Abs@raD > rCrit && ra * va > 0, ra = -raD; H* using compactness *L
ra += Τ * va; ta += Τ;

va += 2 Hf@raD - vaL;
ra += Τ * va; ta += Τ;

stateALF@ra, va, taD
D

gett@stateALF@r_, v_, t_DD := t

display@r_D := Sign@rD * Log10@Abs@rD + 1D H* for data with large dynamic range *L
getr@stateALF@r_, v_, t_DD := display@rD
H* input data *L
rCrit = 1000; tMax = 8.; nSteps = 600; r0 = 0; t0 = 0;

H* work *L
dt = tMax � nSteps; s0 = iniALF@r0, t0D;
nl = NestList@stepALF@dt, rCrit, ðD &, s0, nStepsD;
alf = 8gett@ðD, getr@ðD< & �� nl;

exact = 8gett@ðD, display@Tan@gett@ðDDD< & �� nl;

ListLinePlot@8alf, exact<, PlotRange ® AllD

(a) Mathematica Code

2 4 6 8

-3

-2

-1

1

2

3

4

(b) Mathematica Graphics

Figure 3: Numerical and exact solution of (199). The numerical method (blue curve)
considers r and −r close together for |r| > rCrit.

is found to exceed some pre-selected limit (e. g. 10 as before) the basis e1, e2, e3 gets
reset to the actual values of e1, e2, e3. Then the new value of |r| is 0 which is quite a
remarkable size reduction. A simulation of the motion of our spinning top should allow
to monitor the bodies attitude in a constant frame; so we have to record the attitude of
the ‘temporary basis’ e1, e2, e3 with respect to a ‘master basis’ m1,m2,m3 which is held
constant over the whole simulation. It is convenient to think of m1,m2,m3 as being
selected (as a positively oriented orthonormal basis in V) independent of the attitude
of our body at any time. This then allows us to treat many bodies simultaneously, the
situation treated in [17] and [18]. We thus introduce a rotation vector ρ, which describes
e1, e2, e3 in terms of m1,m2,m3:

e1 = ρ ∗m1 , e2 = ρ ∗m2 , e3 = ρ ∗m3 (200)

and define
J := I1 |m1 〉〈m1 |+ I2 |m2 〉〈m2 |+ I3 |m3 〉〈m3 | (201)

which allows representing I as
I = Jρ . (202)

We are now in a position to formulate the basis resetting step:

ρ 7→ r ◦ ρ , I 7→ Jρ , ṙ 7→ ṙ− r× ṙ

1 + r · r
, r 7→ 0 , p 7→ 4 I ṙ . (203)

The point is that r ◦ ρ has the same value before and after the transformation and thus,
due to the constancy of the mi, the basis ei = r ∗ ei = r ∗ ρ ∗mi remains constant in
space during reset (not during motion). The transformation property of the velocity ṙ
is a direct consequence of (166). Notice that the original value of ṙ results from the
first equation in (193) and has to be computed in a time-stepping algorithm anyway.
The transformation property of p comes from inserting the transformed value of ṙ into

43

the first equation of (187) using there that now r = 0. The computational work of
such a resetting step is similar to one dynamical step. Typically we have a few thousand
dynamical steps between two resetting steps, so that the computational effort of resetting
is ignorable. In (203) the particular form of the transformation in r-space was exploited,
having computational efficiency in mind (which is not very important as just mentioned).
This obscures the general nature of the problem. There is a general way to extend an
arbitrary transformation f : V → V in r-space (configuration space) to a canonical
transformation f̃ in r,p-space (phase space):

f̃ : V × V → V × V

(r,p) 7→

(
f(r),

(
∂ f(r)

∂r

)∗−1
p

)
(204)

which, by taking the contragredient of the Jacobian, reflects the property of canonical
momenta to be co-vectors. Since Jacobians can efficiently be computed numerically,
this is a very practical method. It gives the same result as equation (203) in which the
transformation of p is ad hoc.

Figure 4 shows the evolution over a time span of 10 seconds for a free top with data
treated in [28]: I1 = 0.345, I2 = 0.653, I3 = 1.0 and L′ = (1.8, 0.4,−0.9).

Finally we treat the case that on the center of mass there acts a force which can be
derived from a potential of the form (179). Let the total Hamiltonian thus be of the
form

H(p, r) = H0(p, r) + V (r) (205)

where H0 is what in (192) was denoted H, and x is what in (178) was denoted x0. In
the canonical equations this interaction potential adds a term −∂V

∂r to the right-hand
side of the second equation of (193). For this term a straight-forward calculation gives

−∂V (r)

∂r
=

2

1 + r · r

(
− | r 〉〈 t |

1 + r · r
+ |x 〉〈 r | − | r 〉〈x |+ (x · r)1−Ax

)
(∇Φ)(p+ r ∗ x)

(206)

where

t := (1− r · r)x + 2 (r · x) r + 2 r× x (207)

In the canonical equations we now have in addition to I the parameter x (recall that
this is the ‘center-of-mass position vector in reference position’ and that the dynamically
evolving center-of-mass position vector is r ∗ x). and just as I it is affected by the basis
resetting step which we introduced in order to avoid stress for the time stepping algorithm
resulting from |r| becoming large. In complete analogy to the representation (201) and
(202) we introduce a master representation for x:

y = y1m1 + y2m2 + y3m3 , x = ρ ∗ y . (208)

If x is used always in this form, i.e. expressed in terms of ρ and an invariable vector,
the basis resetting step (203) needs no extension: resetting ρ resets x automatically.

44

Figure 4: Evolution of state descriptors of a spinning top as obtained using the asyn-
chronous leapfrog integrator

That this can be expressed in short and simple code can be seen from the listing of class
GyrHam in file spinningtop.cpp in [6].

Simulation runs with such an interaction behave very similar to those without inter-
action but for angular momentum, there is only one of the three components constant.

I am not aware that this elegant Hamiltonian formulation of the spinning top with
Euler-Rodrigues parameters as position coordinates has been obtained earlier. Actually
it is hard to believe that this is a truly new result: These days, where it is common place
that the configuration space of the spinning top is the Lie group SO(3), there is noth-
ing more natural than trying whether, what in Lie group theory is known as canonical
coordinates (see [24] p.104 Proposition 1.6), could be used as generalized coordinates
in a Lagrangian and Hamiltonian approach to dynamics of the spinning top. Up to an
unhappy factor 2 the Euler-Rodrigues parameters approximate and extend canonical co-
ordinates and thus are simply the computationally adequate realization of the theoretical
concept of canonical coordinates in the case of the rotation group. Carrying through his
program can’t end in equations essentially different from (193).

Note that the numerical integrator in [17], [18] is based on a predicting version of the

45

Figure 5: Evolution of state descriptors of a spinning top as obtained using the direct
midpoint integrator

the action principle and does not rely on differential equations formulated in terms of
some system of coordinates. For the same input data used for creating Figure 4 this direct
midpoint integrator creates Figure 5. This diagram shows that now the points where |r|
becomes large play no particular role. As a result of this, the conservation of energy and
angular momentum holds more accurately. What makes this possible is that the group
multiplication ◦ is used for bringing about the state change associated with an integration
step instead of additive increments of coordinates. This ‘natural’ integration method is
reversible. For the Hamiltonian method I did not investigate reversibility thoroughly.
For simulation runs over a few rotations no deviations from reversibility can be found on
the graphical resolution. With the Störmer - Verlet integrator I found the relative errors
of energy and angular momenta always going up, whereas the asynchronous leapfrog
method can be tuned to go some of the steps down again. The phenomenon is however
very sensitive to numerical errors and so a suitable setting in the discretization length
for computing the Jacobian numerically is needed so see the effect. Investigations with
multiple precision arithmetic will have to be done to study reversibility. Again, the
‘natural method’ is free of these problems.

46

6 Motion of rigid bodies in space

We now suspend the assumption that a point of our body remains fixed in space. Further,
we have in mind not only one body and allow for the possibility that bodies collide and
also interact with external fields. As we have seen in subsection 5.2 the generic attitude
of a rigid body can be represented by a frame F (t) ∈ FP and, therefore, by a group
element g(t) ∈ ISO(3) which moves the space-fixed ‘master frame’ F into F (t). It is
tempting to base the notion of velocity (which here comprises translational velocity and
angular velocity) on the analysis of t 7→ g(t) ∈ ISO(3) just as we have based the notion
of angular velocity alone on t 7→ g(t) ∈ SO(3), see (159) and (161). We thus will need
the exponential function and the logarithm also for the group ISO(3). Actually we
have given these functions for the ‘computational version’ G of SO(3). It suggests itself
to make use of these results by replacing ISO(3) by a computational version in which
rotations are represented by elements of G. This computational version of the Euclidean
group will be designated E . Defining this group, its Lie algebra, and the exponential
function shall be the first topic of this section.

6.1 The Euclidean group E

We define ...

47

References

[1] Ulrich Mutze: homepage
http://www.ulrichmutze.de/softwaredescriptions/pala_listing.pdf

http://www.ulrichmutze.de/sourcecode/pala.zip

http://www.ulrichmutze.de/winExe/pala_distribution.zip

[2] Cornell University, Center for Advanced Computing: Engineering breakthrough: a
research collaboration pays off for Kodak.
http://www.cac.cornell.edu/about/studies/Kodak.pdf

[3] Ulrich Mutze: Predicting Classical Motion Directly from the Action Principle II
Mathematical Physics Preprint 1999
http://www.ma.utexas.edu/mp_arc/c/99/99-271.pdf

[4] Ulrich Mutze: Separated quantum dynamics
Mathematical Physics Preprint 2008
http://www.ma.utexas.edu/mp_arc/c/08/08-69.pdf

[5] Ulrich Mutze: homepage
http://www.ulrichmutze.de/softwaredescriptions/cpmProject.pdf

http://www.ulrichmutze.de/softwaredescriptions/cpm0listing.pdf

http://www.ulrichmutze.de/softwaredescriptions/cpmlisting.pdf

[6] Ulrich Mutze: homepage
http://www.ulrichmutze.de/softwaredescriptions/cpmlisting.pdf

[7] Saunders Mac Lane, Garrett Birkhoff: Algebra, MACMILLAN, 1968, Chapter XII

[8] Jeremy M. Berg, John L. Tymoczko, Lubert Stryer: Biochemistry, Freeman, Sixth
edition 2008

[9] Werner Graeub: Lineare Algebra, Springer, 1958

[10] Rudolf Haag: Local Quantum Physics, Springer, Second edition 1996

[11] D.P.L. Castrigiano, U. Mutze: Covariant description of particle position, Phys. Rev.
D vol. 26 pp. 3499-3505 1982

[12] H. J. Meister: Darstellungstheoretische Behandlung von Problemen der Elemen-
tarteilchenphysik I. Grupentheoretische Grundlagen. Universität München, Win-
tersemester 1965/66, p. 14 (2.17)

[13] Thomas Haslwanter: Mathematics of Three-dimensional Eye Rotations, Vision Res.
Vol 35, No 12, pp 1727-1739, 1995

[14] Klaus Hepp: On Listing’s Law, Commun. Math. Phys. 132, 285-292 (1990)

48

[15] Olinde Rodrigues: Des lois géométriques qui régissent les déplacements d’un
système solide dans l’espace, et de la variation des coordonnées provenant de ses
déplacements considérés indépendamment des causes qui peuvent les produire, Jour-
nal de Mathématique Pures et Appliquées, 5, 380-440, 1840

[16] Ulrich Mutze: Quaternions - Redundancy + Efficiency = Ternions,
Mathematical Physics Preprint 05–53, February 2005
http://www.ma.utexas.edu/mp_arc/c/05/05-53.pdf

[17] Ulrich Mutze: Rigidly connected overlapping spherical particles: a versatile grain
model, Granular Matter 2006

[18] Ulrich Mutze: Polyspherical grains and their dynamics
Mathematical Physics Preprint 07–252, July 2007
http://www.ma.utexas.edu/mp_arc/c/07/07-252.pdf

[19] Ulrich Mutze: Precision-dependent symmetry breaking in simulated motion of poly-
spherical grains
Mathematical Physics Preprint 09–113, July 2009
http://www.ma.utexas.edu/mp_arc/c/09/09-113.pdf

[20] A.M. Stuart and A.R. Humphries: Dynamical Systems and Numerical Analysis,
Cambridge University Press, 1996

[21] J.M. Sanz-Serna and M.P. Calvo: Numerical Hamiltonian Problems, Applied Math-
ematics and Mathematical Computation 7, Chapman & Hall 1994

[22] Ernst Hairer, Christian Lubich, Gerhard Wanner: Geometric numerical integration
illustrated by the Störmer/Verlet method, Acta Numerica (2003) pp. 1-51 Cam-
bridge University Press, 2003

[23] Benedict Leimkuhler and Sebastian Reich: Simulating Hamiltonian Dynamics,
Cambridge Monographs on Applied and Computational Mathematics, Cambridge
University Press 2004

[24] Sigurdur Helgason: Differential Geometry, Lie Groups, and Symmetric Spaces, Aca-
demic Press, 1978

[25] Yvonne Choquet-Bruhat, CÃ©cile DeWitt-Morette, Margret Dillard-Bleick: Anal-
ysis, Manifolds, and Physics, North-Holland, Revised Edition 1982

[26] John Baez: Torsors Made Easy, June 12, 2006
http://www.math.ucr.edu/home/baez/torsors.html

[27] Ulrich Mutze: An asynchronous leap-frog method (2008)
http://www.ma.utexas.edu/mp_arc/c/08/08-197.pdf

49

[28] Ernst Hairer, Gilles Vilmart: Preprocessed Discrete Moser-Veselov algorithm for
the full dynamics of the rigid body J. Phys. A: Math. Gen. 39 13225-13235 2006
see also: ftp://ftp.irisa.fr/techreports/theses/2008/vilmart.pdf

[29] J. David Brown: The Midpoint Rule as a Variational-Symplectic Integrator. I.
Hamiltonian Systems
arXiv: gr-qc/0511018v1 3 Nov 2005

[30] Donald G. Saari and Zhihong (Jeff) Xia: Off to Infinity in Finite Time
http://www.ams.org/notices/199505/saari-2.pdf

50

	Introduction
	Vectors
	Orientation of lists of vectors

	Points
	Orientation of lists of points
	Affine mappings in point space

	Linear maps
	Determinant, trace, and the operation of inversion
	Eigenvalues and eigenvectors
	The exponential function
	Homotheties, dyads, and projectors
	Linear maps induced by the vector product
	Spectral representation of symmetric tensors
	Singular value decomposition and polar decomposition

	Rotations
	Curves of rotations
	Rotational motion of a rigid body

	Motion of rigid bodies in space
	The Euclidean group E

