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Abstract

For an arbitrary holonomic mechanical system a method for

constructing time-discrete trajectories is derived by applying a

generalized principle of stationary action to the manifold of those

system paths which are parabolic with respect to system of gen-

eralized coordinates. The method is applied to the anti-damped

harmonic oscillator, and data are reported that suggest that the

method accurately represents the growth of the amplitude till nu-

merical overflow. A modified variational derivative of the general-

ized action integral is shown to agree with the force that the envi-

ronment of the system exerts to it. This generalizes the character-

ization of free motion in terms of vanishing variational derivative.

1 Introducing the Motive Force Function

Let us consider a holonomic mechanical system and restrict our inter-

est on a part Ω of the configuration space on which a single system of

n generalized coordinates can be introduced. The corresponding coor-

dinate n-tupels form an open, connected subset Xn of Rn and time is

restricted to an open interval I. Then a trajectory of the system is rep-

resented as a curve

I �! Xn ; t 7�! x(t) ; (1)

and the time derivatives of the coordinate n-tupels, the (generalized)

velocities, are denoted by v and the second time derivatives by a. The
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dynamical behavior of the system is characterized by a Lagrangian

L : I�Xn�Rn �! R ; (t;x;v) 7�! L(t;x;v) : (2)

An important potential of generalized coordinates (and the circum-

stance that the Lagrangian depends only on them and their time

derivatives) is to cope with technical systems. It allows to model in

an accurate and economical manner constraint motion like that of a

pendulum or of a roller coaster cabin. It does not allow, however, to

model friction and other forces that are accompanied with power being

extracted from or injected into the system. Today, many mechanisms

contain motors or other actuators which transmit power under the con-

trol of sensor signals and the internal state of micro electronic devices.

So it is normal that an internal mass of the system feels forces that are

given by a rather arbitrary function of time, position and velocity. 1

It is the attitude of this article to consider such forces as important as

the ones already present in the Lagrangian and to accept no constructs

excluding them. Not restricting the nature of the forces also helps to

approximate arbitrary non-holonomic constraints by introducing forces

that dynamically enforce obedience to these constraints with sufficient

precision. Since non-holonomic constraints in technical systems are

normally less stiff than holonomic ones this strategy is here much more

adequate than for holonomic constraints.

Forces, that are not included in the definition of the Lagrangian are

given by their components with respect to the generalized coordinates

under consideration (see [1] §33;(7)):
F : I�Xn�Rn �! Rn ; (t;x;v) 7�! F(t;x;v) : (3)

Their operational definition is by a thought experiment: switching F
off could be compensated by an external mechanism which delivers the

power �Fv =�Fivi (sum convention) to the system.

The processes or conditions which exert force F are considered part of

the system under discussion. The general Lagrange equations of me-

chanics (see [1] §34;(8a)) determine the trajectories of the system for

given initial conditions, i.e. for given values of (t;x;v). Physicists be-

came used to consider this the answer to the basic physical question to

be asked in this framework. Here, we consider a slightly more general

question which is basic to many technical applications and to our sen-

sorial experience of mechanics: Let us consider a situation in which the

1and acceleration, ..., a generalization which we shall not take into account.
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system is forced by external means (e.g. by a mechanism or by our own

hands) to follow a pre-determined trajectory t 7! x(t). At each point in

time one has to apply a motive force M to keep the system ‘on track’. In

usual physical notation this force is given by

M = d

dt
∂L
∂ẋ
� ∂L

∂x
�F =�δL

δx
�F ; (4)

which is a by-product of the reasoning that leads to writing the equa-

tion of motion in the form M = 0 (see [1] §34). This equation for the

motive force implies that for any instant t the quantity M depends only

on x(t); ẋ(t); ẍ(t) thus giving rise to a function

M : I�Xn�Rn �Rn �! Rn ; (t;x;v;a) 7�!M(t;x;v;a) (5)

which according to (4) has the representation

Mi(t;x;v;a) = Lvivk(t;x;v)ak +Lvixk(t;x;v)vk+Lvit(t;x;v)�Lxi(t;x;v)�Fi(t;x;v) ; (6)

where the indexes to L denote partial derivatives with respect to the

argument positions that normally are associated with variable names

t;x;v. For later convenience we introduce a notation for the expression

arising from solving the equation M = 0 for a:

a = (Lvv(t;x;v))�1(F(t;x;v)+Lx(t;x;v)�Lvt(t;x;v)�Lvx(t;x;v)v)=: A(t;x;v) : (7)

Here, the inverse power denotes for n > 1 the inversion of a matrix

which very conveniently can be defined to mean the always existing

pseudo-inverse. For systems of point particles in Cartesian coordinates

the matrix Lvv is diagonal so that matrix inversion becomes inversion of

numbers. If F, Lx, Lvt depend on v trivially, and Lvx vanishes, A depends

on v trivially. This then gives the time stepping algorithm in section 3

a particularly simple form.

Notice that function M can be studied experimentally also for argu-

ments that never would arise from a free trajectory starting from any

initial condition that can be realized experimentally. Further it should

be noted that knowing this expression is more than knowing the equa-

tion of motion: the latter can be multiplied by any non-zero factor and

will remain a equation of motion, but it will loose the capability to pre-

dict reaction forces of the system to the out-side world.

3



2 Motive Force and the Action along

Parabolic Paths

Let us now investigate how the motive force function M is related to

the action integral. Since we include forces which do not result from a

Lagrangian the action integral has to be extended. This extension is

suggested by known formulations of the Hamilton’s principle for non-

conservative forces( [2] p. 42-44) and was proposed in a restricted con-

text in [5]. It deals with paths that are short enough to justify a rep-

resentation in terms of quadratic polynomials and it was motivated by

the desire to improve the Euler rule for a finite time step trajectory

both in accuracy and stability while maintaining the simple physics-

based logic of this rule.

With a parabolic path segment of time extension 2τ[t; t +2τ℄�! Xn ; t +h 7�! x+ vh+a
h2

2
; (8)

we associate the generalized action integral

S(t;x;v;a;τ) := 2τZ
0

L(t +h;x+ vh+a
h2

2
;v+ah)dh+ 2τZ

0

F(t +h;x+ vh+a
h2

2
;v+ah)a

h
2
(h�2τ)dh

(9)

on the natural domain of this expression:

Y := f(t;x;v;a;τ)2 I�Xn�Rn �Rn �R j
t +2τ 2 I; ^

h2[0;2τ[ x+ vh+a
h2

2
2 Xng : (10)

In addition to the parametrization of a path segment in terms of (x;v;a),
we introduce one in terms of three configurations (x1;x2;x3) for three

equidistant points in time:

x1 := x

x2 := x+ vτ+a
τ2

2

x3 := x+ v(2τ)+a
(2τ)2

2
: (11)
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In terms of these quantities we have

x = x1

v = �3x1+4x2� x3

2τ

a = x1�2x2+ x3

τ2 : (12)

Then the generalized action integral gives rise to a ‘three-point func-

tion’:

S̃(t;x1;x2;x3;τ) := S(t;x;v;a;τ) ; (13)

where x,v, and a are given by (12). Hamilton’s principle is concerned

with variations of the path for which the endpoints are held fixed. In

the present context such a variation corresponds simply to a change

of the variable x2 and the variational derivative of the action integral

becomes proportional to the normal derivative with respect to this vari-

able. A factor of proportionality is built into the following definition in

order to absorb a factor which otherwise would appear in the following

theorem. Here, we use the 3-point parameterization only as a heuristic

interplay and return to the original parameters:

3
4τ

∂S̃
∂x2

(t;x1;x2;x3;τ) = 3
2τ2(Sv(t;x;v;a;τ)� 1

τ
Sa(t;x;v;a;τ))=: Ŝ(t;x;v;a;τ) : (14)

The expression Ŝ shall be called the midpoint derivative of S. The sym-

bol ˆ tries to suggest a shift of the central one of three points, and

its position indicates a derivative in analogy to Newton’s dot notation.

This position does not interfere with the coordinate index, which the

symbol carries in a more verbose notation. Now all expressions are in

place to formulate the main result:

Theorem 1 Let L and F be regular enough that M as defined in (5), (6)

is C2, and let function Ŝ be defined on Y of (10) by equations (9) and (14).

Then

Ŝ(t;x;v;a;τ) =�M(t + τ;x+ vτ;v+aτ;a)+O(τ2) : (15)

Verification of this statement is straigtforward in principle since both

sides can be expanded in powers of τ by Taylor’s formula. For the left-

hand side it is convenient to perform the midpoint derivative under the
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integral first:

4τ
3

Ŝi(t;x;v;a;τ) =
2τZ

0

dh
h
2τ

(2� h
τ
)(2Fi +ak

∂Fk

∂xi
�2

∂L
∂xi

)(t +h;x+ vh+a
h2

2
;v+ah)+

2τZ
0

dh
τ
(1� h

τ
)(ak

∂Fk

∂vi
�2

∂L
∂vi

)(t +h;x+ vh+a
h2

2
;v+ah) (16)

and then expand the integrand in powers of h and finally get a series in

τ by integration. The number of terms created during this expansion

is so large that I switched to using computer programs for symbolic

computations. I built the expressions for the one-dimensional case by

Mathematica which is perfectly straightforward since all derivatives,

integrals, and power expansions can be formulated in terms of built-

in functions. It is rather obvious how the terms resulting from the

1-dimensional expansion may be interpreted as a shorthand-notation

for the terms resulting from the expansion in any dimension. To bring

such an argument in a rigorous form, one had to work through some

technicalities. In order to avoid this I implemented the rules that cre-

ate the expansion coefficients in the language of the powerful program

FORM by J.Vermaseren and got a result that agreed with the Mathe-

matica result when applying the shorthand interpretation mentioned

above. The FORM program and result listing is given here as an Ap-

pendix. This is not only the most efficient way to convince oneself of the

correctness of the theorem but also is a convenient tool for testing vari-

ations of it. So, one easily finds that replacing M(t +τ;x+vτ;v+aτ;a) by

M(t + τ;x+ vτ+ a τ2

2 ;v+ aτ;a) does not increase the order of the approxi-

mation, 2 and that a replacement by M(t + τ;x+ vτ;v;a) lowers it.

The precise structure of the expressions in the theorem was found by

trial and error from special results that were obtained for Lagrangians

of special type, some also by using broken linear paths instead of

parabolic ones.

A simple consequence of (15) is

Ŝ(t;x;v;a;τ) =�M(t;x;v;a)+O(τ) ; (17)

2this would give rise to the implicit midpoint rule instead of the explicit one in the

course of the following development
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This shows that the the general Lagrange equations of mechanics,

given by M = 0 (see (4)), follow from a local action principle saying that

the midpoint derivative of the generalized action integral vanishes on

a trajectory. This suggests to take

Ŝ(t;x;v;a;τ) = 0 (18)

as a rule for defining a in (8) to approximate the actual system trajec-

tory with initial conditions (t;x;v) over a span 2τ. Since in most cases of

practical interest, the function Ŝ can’t be calculated exactly, it is natu-

ral to use the approximation provided by the theorem and to determine

a from the equation

M(t + τ;x+ vτ;v+aτ;a) = 0 : (19)

Notice that Euler’s rule just uses equation M(t;x;v;a) = 0 instead. This

is the only rational rule in a situation where no information is available

on the time span over which a will be used to predict the trajectory. If

this span 2τ is known, a much better rule can be given in the form

of (19). The next section discusses the computational solution of the

initial value problem in terms of 2τ time steps in more detail. Section

4 will give an example where (19) works better than (18).

3 Time stepping algorithm

Given (t;x;v;τ) we determine the acceleration a from (19) and put for

the next state

t := t +2τ
v := v+a(2τ)
x := x+ v(2τ)+a

(2τ)2

2

(20)

or in a more economical form

t := t +2τ
v̂ := v+a(2τ)
x := x+(v+ v̂)τ
v := v̂

(21)
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The main task of the time stepping algorithm thus is to solve (19) for

a. Using the function A from (7), this can be written as

a = A(t + τ;x+ vτ;v+aτ) : (22)

If A depends on v trivially, we get a simply as

a = A(t + τ;x+ vτ;v) ; (23)

and if it depends linearly : A(t;x;v) = A0(t;x)+A1(t;x)v, we get

a = (1� τA1(t + τ;x+ vτ))�1(A0(t + τ;x+ vτ)+A1(t + τ;x+ vτ)v) : (24)

Else, the equation is implicit in a harmless manner and can be solved

by a few iterations of

a0 := 0

an+1 := A(t + τ;x+ vτ;v+anτ) : (25)

This algorithm is a modification of what is known as the explicit mid-

point rule, see [3], [4]. It is interesting to observe that (23) can eas-

ily be applied to quantum dynamics and to hyperbolic partial differen-

tial equations. Let us spell out here the quantum version for a time-

dependent Hamiltonian Ht :

a : =� 1~2H2
t+τ(ψt + τψ̇t) ;

ψt+2τ := ψt +2τψ̇t +2τ2a ;
ψ̇t+2τ := ψ̇t +2τa ; (26)

where the initialization of the velocities is done by ψ̇0 := 1
i~H0ψ0.

3.1 Informal aside

With (26) it is a matter of half an hour to set up a one-dimensional computer model

of a single quantum particle under the influence of arbitrary potentials. In all the

many experiments done in this way, I found no exception to the following remarkable

property: the norm and the energy expectation value (since the potentials did not

depend on time) of the wave function deviate from strict constancy during phases of

very violent motion (where the spatial and temporal variations are clearly too large

for the discretization length and time of the model) but come back to the original val-

ues with nearly the accuracy of the computer’s number representation in all phases
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of calmer motion. No trend for changing the norm or the energy in the long run

was observed. Notice that this is more than unitarity and energy conservation. A

method enjoying the property of unitarity would conserve the disturbed value of the

norm and would not restore it. I detected comparable stability properties whenever

I applied the method characterized by equations (21) and (23) to physical systems,

ranging from point particles, to rigid bodies, waves, and quantum particles. So, there

seems to exists the method to start with, when the dynamics of physical systems is

to be modeled on a computer. The implementation is nearly as simple as that of the

Euler rule and whenever the discretization is chosen with a minimum of insight one

will see the system evolve without the explosive auto-acceleration effects that the

Euler rule will show after a few integration steps. The simplicity of the algorithm

guarantees fast execution. Only if high accuracy it to be achieved with a small num-

ber of steps and in systems of sufficiently smooth forces, more specialized methods

may offer substantial advantages. It is not clear whether it makes sense to ask for a

reason behind this behavior that I always experienced as robustness, reliability, or -

my highest ranking - naturalness. Here is my attempt: Since all fundamental equa-

tions of motion are at most of second order, locally parabolic trajectories are more

basic than any trajectories of higher order. They are ‘the stuff with which the inter-

nal logic of dynamics has to deal’. Equation (23) formulates a the most symmetric

and only reasonable rule to determine a value for a (the only degree of freedom of

a locally quadratic path with given initial position and velocity) that is intended to

be constantly valid over a tiny but finite time span. I imagine that Leonhard Eu-

ler would have switched soon to that symmetrical mode of updating the acceleration

in the center of the time step if he would have been interested in computing a finite

piece of a trajectory. For doing it by thought experiment, the symmetrical mode offers

no advantage since the number of acceptable time steps is unlimited then.

4 Application to the damped harmonic os-

cillator

Let us consider the one-dimensional harmonic oscillator with a La-

grangian and force written as

L(t;x;v) = m
2

v2� k
2

x2 ; F(t;x;v) =�bv ; (27)

from which we get (see (6),(7))

M(t;x;v;a) = ma+bv+ kx ; A(t;x;v) =� 1
m
(kx+bv) : (28)
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Here, (9) and (14) are easily calculated exactly, resulting in an expres-

sion which is linear in a. So, (18) also can be solved exactly:

a =� bv+ k(x+ vτ)
m+ τ(b+ 3

5kτ) ; (29)

The same is true for (19) which according to (24) gives an even simpler

result:

a =�bv+ k(x+ vτ)
m+ τb

: (30)

Running (21) with these expressions may be compared to the known

exact solution of equation

mẍ+bẋ+ kx = 0 : (31)

Most interesting is the somewhat artificial situation b < 0, in which

there is no friction but a driving force which increases with speed. Then

the amplitude of the exact solution grows exponentially. When multi-

plied by e
b

2m t , it becomes an exact harmonic oscillation. It is convenient

to multiply the numerical solutions with the same factor and to observe

the slow change in amplitude which then indicates a deviation from the

exact solution. The following numbers are representative for the many

numerical experiments which I ran. The number of steps for one oscil-

lation period was 32 (as in the anharmonic oscillator example in [5]).

The value of b was chosen such that the amplitude grows by a factor of

1032 in 1000oscillations (by 7:6 % during one period). Then the Euler

method lets the reduced amplitude grow by a factor of 2 shortly after

the second oscillation period is completed. The Runge Kutta method of

second order gives the same excess in period 153, method (29) does this

in period 1642and (30) gives a deviation of 1% in period 10068. Here,

the amplitude of the exact amplitude is too large for being represented

by a 64bit number and it is only due to some increased internal accu-

racy that the program did not stop on overflow some 300steps before.

The method seems to create no trend in the amplitude error. So it

is much more stable than the method (29) resulting from the exact

solution of a variation problem. Thus, contrary to what I argued in

[5], also the property of an integrator formula to represent an exact

solution of the local form of the action principle has to be ruled out as

a guide to understand this marvelous stability of the explicit midpoint

method.
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6 AppendixFORM by J.Vermaseren,version 3.0(Jan 28 2001) Run at: Tue May 1 13:36:54 2001********************************************************************* Ulri
h Mutze 2001-4-23* Symboli
 
omputation using the program FORM (by J.A.M. Vermaseren)* for proving Theorem 1 of* 'Predi
ting Classi
al Motion Dire
tly from the A
tion Prin
iple III'**********************************************************************#define N "16"* number of generalized 
oordinates. Is not treated on a symboli
 level.* A
tually one 
an vary this N and will always get the same result.#define p "3"* p=3 suffi
ient for getting all lowest order terms in expressions diff rightDimension `N';
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Symbols j,h,dt,L;Fun
tions Dt,Dxa,Dxv,Dva,H;Ve
tors dx,dv,x,v,a,F;Index i,k;Off statisti
s;Lo
al dG0=Dt+Dva+Dxv;* 0 refers to law h |--> (t+h, x+v*h,v+a*h) =: phi0(h)Lo
al dG1=Dt+Dva+Dxv+H*Dxa;* 1 refers to law h |--> (t+h, x+v*h+a*h*h/2,v+a*h) =: phi1(h)Lo
al G0=1+sum_(j,1,`p',invfa
_(j)*(h*dG0)^j);Lo
al G1=1+sum_(j,1,`p',invfa
_(j)*(h*dG1)^j);* after all of the following 
ommutations are done, we have up to p-th* order in h for ea
h fun
tion f:RxRnxRn-->R :* f(phi0(h))=(G0f)(h)* f(phi1(h))=(G1f)(h)repeat;id Dt*Dxv=Dxv*Dt;id Dt*Dxa=Dxa*Dt;id Dt*Dva=Dva*Dt;id Dt*H=1+H*Dt;* Dt is derivation with respe
t to h, meaning of all derivation operators* be
omes 
lear with definitions (*) laterendrepeat;id H=0;* Taylor's expansion takes all derivations for h=0repeat;id Dxa*Dxv=Dxv*Dxa+Dva;id Dva*Dxv=Dxv*Dva;endrepeat;* now the definitions (*) whi
h were refered to earlier:id Dt=dt;id Dxv=dx(k)*v(k);id Dxa=dx(k)*a(k);id Dva=dv(k)*a(k);.sort* .sort finishes a module, so that we may enter into a new* fixed order 
y
le of* 1. De
larations: starting with keywords Symbol(s), Fun
tion(s), ...* 2. Spe
ifi
ations: e.g.statisti
s Off ...* 3. Definitions: starting with keywords Lo
al, ...
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* 4. Exe
utable Statements: starting with keywords id ...* 5. Output 
ontrol: su
h as Print and Bra
ketSymbols tau,dh,n;Lo
al G0tau=dh*G0;* without this marking te
hnique also the h in expressions G1 would be* 
hanged to tau despite the en
apsulation of the id statement in a module:id dh*h^n?=tau^n;.sortSymbols dy;*doing the midpoint derivative under the integral sign of the L term* the expression is 
al
ulated by handLo
al deri1=-tau^-2*(h*(h-2*tau)*dx(i)+2*(h-tau)*dv(i))*L;Lo
al deri2=tau^-2*(2*h*(2*tau-h)*a(k)*dx(i)*F(k)+2*(h-tau)*a(k)*dv(i)*F(k)-2*F(i));Lo
al Si1=dy*deri1*G1;Lo
al Si2=dy*(h/2)*(h-2*tau)*deri2*G1;* doing the integralid dy*h^n?=(2*tau)^(n+1)/(n+1);.sort* expressions for the motive for
e from midpoint derivative of the* a
tion integral; 1 refers to the 
ontribution of the Lagrangian,* 2 to the additional for
es:Lo
al MiA
tion=-3/(4*tau)*(Si1+Si2);* expressions for the motive for
e from Lagrange's differential expression.Lo
al MiTau=((dv(i)*(dv(k)*a(k)+dx(k)*(v(k)+tau*a(k))+dt)-dx(i))*L-F(i))*G0tau;* Comparing the expressions:Lo
al diff=MiA
tion-MiTau;Bra
ket tau;Print diff;* development should start with tau^2, noti
e that 
onstant terms (that are* 
laimed not to exist) would appear at the end of the development.end;diff =+ tau^2 * ( - 1/10*dx(i)*dt^2*L - 1/5*dx(i)*dx.v*dv.a*L - 1/5*dx(i)*dx.v*dt*L - 1/10*dx(i)*dx.v^2*L - 3/5*dx(i)*dx.a*L - 1/5*dx(i)*dv.a*dt*L - 1/10*dx(i)*dv.a^2*L + 4/5*dx(i)*a.F + 1/10*dv(i)*dt^3*L + 4/5*dv(i)*dx.v*dx.a*L + 3/5*dv(i)*dx.v*dv.a*dt*L + 3/10*dv(i)*dx.v*dv.a^2*L + 1/5*dv(i)*dx.v*a.F + 3/10*dv(i)*dx.v*dt^2*L + 3/10*dv(i)*dx.v^2*dv.a*L + 3/10*dv(i)*dx.v^2*dt*L + 1/10*dv(i)*dx.v^3*L + 4/5*dv(i)*dx.a*dv.a*L + 4/5*dv(i)*dx.a*dt*L + 1/5*dv(i)*dv.a*a.F + 3/10*dv(i)*dv.a*dt^2*L + 3/5*dv(i)*dv.a*L + 3/10*dv(i)*dv.a^2*dt*L + 1/10*dv(i)*
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dv.a^3*L + 1/5*dv(i)*a.F*dt - 1/10*F(i)*dt^2 - 1/5*F(i)*dx.v*dv.a - 1/5*F(i)*dx.v*dt - 1/10*F(i)*dx.v^2 - 3/5*F(i)*dx.a - 1/5*F(i)*dv.a*dt- 1/10*F(i)*dv.a^2 )+ tau^3 * ( - 1/10*dx(i)*dt^3*L - 4/5*dx(i)*dx.v*dx.a*L - 3/5*dx(i)*dx.v*dv.a*dt*L - 3/10*dx(i)*dx.v*dv.a^2*L + 4/5*dx(i)*dx.v*a.F - 3/10*dx(i)*dx.v*dt^2*L - 3/10*dx(i)*dx.v^2*dv.a*L - 3/10*dx(i)*dx.v^2*dt*L - 1/10*dx(i)*dx.v^3*L - 4/5*dx(i)*dx.a*dv.a*L - 4/5*dx(i)*dx.a*dt*L+ 4/5*dx(i)*dv.a*a.F - 3/10*dx(i)*dv.a*dt^2*L - 4/15*dx(i)*dv.a*L -3/10*dx(i)*dv.a^2*dt*L - 1/10*dx(i)*dv.a^3*L + 4/5*dx(i)*a.F*dt - 1/6*dv(i)*dt^4*L - dv(i)*dx.v*dx.a*dv.a*L - dv(i)*dx.v*dx.a*dt*L + 2/5*dv(i)*dx.v*dv.a*a.F - 2*dv(i)*dx.v*dv.a*dt^2*L - 2*dv(i)*dx.v*dv.a^2*dt*L - 2/3*dv(i)*dx.v*dv.a^3*L + 2/5*dv(i)*dx.v*a.F*dt - 2/3*dv(i)*dx.v*dt^3*L - 1/2*dv(i)*dx.v^2*dx.a*L - 2*dv(i)*dx.v^2*dv.a*dt*L -dv(i)*dx.v^2*dv.a^2*L + 1/5*dv(i)*dx.v^2*a.F - dv(i)*dx.v^2*dt^2*L -2/3*dv(i)*dx.v^3*dv.a*L - 2/3*dv(i)*dx.v^3*dt*L - 1/6*dv(i)*dx.v^4*L- dv(i)*dx.a*dv.a*dt*L - 1/2*dv(i)*dx.a*dv.a^2*L + 1/5*dv(i)*dx.a*a.F - 1/2*dv(i)*dx.a*dt^2*L + 2/5*dv(i)*dv.a*a.F*dt - 2/3*dv(i)*dv.a*dt^3*L + 1/5*dv(i)*dv.a^2*a.F - dv(i)*dv.a^2*dt^2*L - 2/3*dv(i)*dv.a^3*dt*L - 1/6*dv(i)*dv.a^4*L + 1/5*dv(i)*a.F*dt^2 - 1/10*F(i)*dt^3 - 4/5*F(i)*dx.v*dx.a - 3/5*F(i)*dx.v*dv.a*dt - 3/10*F(i)*dx.v*dv.a^2 - 3/10*F(i)*dx.v*dt^2 - 3/10*F(i)*dx.v^2*dv.a - 3/10*F(i)*dx.v^2*dt - 1/10*F(i)*dx.v^3 - 4/5*F(i)*dx.a*dv.a - 4/5*F(i)*dx.a*dt- 4/15*F(i)*dv.a - 3/10*F(i)*dv.a*dt^2 - 3/10*F(i)*dv.a^2*dt - 1/10*F(i)*dv.a^3 )+ tau^4 * ( 32/35*dx(i)*dx.v*dv.a*a.F + 32/35*dx(i)*dx.v*a.F*dt + 16/35*dx(i)*dx.v^2*a.F + 16/35*dx(i)*dx.a*a.F + 32/35*dx(i)*dv.a*a.F*dt +16/35*dx(i)*dv.a^2*a.F + 16/35*dx(i)*a.F*dt^2 - dv(i)*dx.v*dx.a*dv.a*dt*L - 1/2*dv(i)*dx.v*dx.a*dv.a^2*L + 12/35*dv(i)*dx.v*dx.a*a.F - 1/2*dv(i)*dx.v*dx.a*dt^2*L + 24/35*dv(i)*dx.v*dv.a*a.F*dt + 12/35*dv(i)*dx.v*dv.a^2*a.F + 12/35*dv(i)*dx.v*a.F*dt^2 - 1/2*dv(i)*dx.v^2*dx.a*dv.a*L - 1/2*dv(i)*dx.v^2*dx.a*dt*L + 12/35*dv(i)*dx.v^2*dv.a*a.F +12/35*dv(i)*dx.v^2*a.F*dt - 1/6*dv(i)*dx.v^3*dx.a*L + 4/35*dv(i)*dx.v^3*a.F + 12/35*dv(i)*dx.a*dv.a*a.F - 1/2*dv(i)*dx.a*dv.a*dt^2*L- 1/2*dv(i)*dx.a*dv.a^2*dt*L - 1/6*dv(i)*dx.a*dv.a^3*L + 12/35*dv(i)*dx.a*a.F*dt - 1/6*dv(i)*dx.a*dt^3*L + 4/35*dv(i)*dv.a*a.F + 12/35*dv(i)*dv.a*a.F*dt^2 + 12/35*dv(i)*dv.a^2*a.F*dt + 4/35*dv(i)*dv.a^3*a.F + 4/35*dv(i)*a.F*dt^3 )+ tau^5 * ( 4/7*dx(i)*dx.v*dx.a*a.F + 8/7*dx(i)*dx.v*dv.a*a.F*dt + 4/7*dx(i)*dx.v*dv.a^2*a.F + 4/7*dx(i)*dx.v*a.F*dt^2 + 4/7*dx(i)*dx.v^2*dv.a*a.F + 4/7*dx(i)*dx.v^2*a.F*dt + 4/21*dx(i)*dx.v^3*a.F + 4/7*dx(i)*dx.a*dv.a*a.F + 4/7*dx(i)*dx.a*a.F*dt + 4/21*dx(i)*dv.a*a.F + 4/7*dx(i)*dv.a*a.F*dt^2 + 4/7*dx(i)*dv.a^2*a.F*dt + 4/21*dx(i)*dv.a^3*a.F + 4/21*dx(i)*a.F*dt^3 );
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